
THÈSE DE DOCTORAT DE

L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École Doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Alexandre GÉLIN

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Calcul de Groupes de Classes d’un Corps de Nombres

et Applications à la Cryptologie

Thèse dirigée par Antoine JOUX et Arjen LENSTRA

soutenue le vendredi 22 septembre 2017

après avis des rapporteurs :

M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB

M. Claus FIEKER Professeur, Université de Kaiserslautern

devant le jury composé de :

M. Karim BELABAS Professeur, Université de Bordeaux

M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB

M. Claus FIEKER Professeur, Université de Kaiserslautern

M. Louis GOUBIN Professeur, Université de Versailles-St-Quentin-en-Yvelines

M. Antoine JOUX Chaire de Cryptologie à la Fondation UPMC, Paris

M. Arjen LENSTRA Professeur, École Polytechnique Fédérale de Lausanne

Mme Ariane MÉZARD Professeur, Université Pierre et Marie Curie, Paris

M. Nigel SMART Professeur, Université de Bristol

Class Group Computations

in Number Fields

and Applications to Cryptology

Alexandre GÉLIN

Team ALMASTY, Laboratoire d’Informatique de Paris 6

UPMC Sorbonne Universités

Laboratoire d’Informatique de Paris 6 Université Pierre et Marie Curie

Équipe ALMASTY École doctorale EDITE – ED 130

UPMC - Sorbonne Universités Faculté d’ingénierie – UFR 919

4, place Jussieu 4, place Jussieu

75005 Paris, FRANCE 75005 Paris, FRANCE

Mathematics may be defined as the subject

where we never know what we are talking about,

nor whether what we are saying is true.

— Bertrand Russell

À tous ceux qui ne pourront lire ces mots. . .

Abstract

A common way to construct public-key cryptosystems is to use the discrete exponentiation

in a finite group where the inverse problem, the discrete logarithm problem, is considered

difficult. Several groups are commonly used: multiplicative group of finite fields or Jacobians

of algebraic curves defined over finite fields. The class group of a number field is another

candidate which was sometimes proposed. To study its viability, it is important to identify

the difficulty for this kind of group to determine its cardinality, its structure and the possible

hardness of the discrete logarithm problem. Irrespective of cryptologic applications, methods

to determine the properties of these groups is of independent mathematical interest.

In this thesis, we focus on class group computations in number fields. We start by de-

scribing an algorithm for reducing the size of a defining polynomial of a number field. There

exist infinitely many polynomials that define a specific number field, with arbitrarily large

coefficients, but our algorithm constructs the one that has the absolutely smallest coefficients.

The advantage of knowing such a “small” defining polynomial is that it makes calculations

in the number field easier because smaller values are involved. In addition, thanks to such

a small polynomial, one can use specific algorithms that are more efficient than the general

ones for class group computations.

The generic algorithm to determine the structure of a class group is based on ideal reduc-

tion, where ideals are viewed as lattices. We describe and simplify the algorithm presented by

Biasse and Fieker in 2014 at ANTS and provide a more thorough complexity analysis for it. We

also examine carefully the case of number fields defined by a polynomial with small coeffi-

cients. We describe an algorithm similar to the Number Field Sieve, which, depending on the

field parameters, may reach the hoped-for complexity L
(1

3

)
.

Finally, our results can be adapted to solve an associated problem: the Principal Ideal

Problem. Given any basis of a principal ideal (generated by a unique element), we are able

to find such a generator. As this problem, known to be hard, is the key-point in several

homomorphic cryptosystems, the slight modifications of our algorithms provide efficient

attacks against these cryptographic schemes.

i

Résumé

L’une des voies privilégiées pour la construction de cryptosystèmes à clé publique est l’uti-

lisation dans des groupes finis de l’exponentiation discrète, dont le problème inverse, celui

du logarithme discret, est réputé difficile. Plusieurs groupes sont classiquement utilisés : le

groupe multiplicatif d’un corps fini ou la Jacobienne d’une courbe algébrique définie sur un

corps fini. Le groupe de classes d’un corps de nombres est un autre candidat qui a parfois été

proposé. Pour étudier sa viabilité, il est important de bien cerner la difficulté de déterminer

la cardinalité et la structure du groupe, ainsi que la difficulté éventuelle du problème du

logarithme discret. Indépendamment de ces applications cryptographiques, les méthodes

utilisées pour résoudre ces problèmes ont aussi un intérêt mathématique.

Dans cette thèse, nous nous intéressons au calcul du groupe de classes d’un corps de

nombres. Nous débutons par décrire un algorithme de réduction du polynôme de définition

d’un corps de nombres. Il existe une infinité de polynômes qui définissent un corps de nombres

fixé, avec des coefficients arbitrairement gros. Notre algorithme calcule celui qui a les plus

petits coefficients. L’avantage de connaître un petit polynôme de définition est qu’il simplifie

les calculs entre éléments de ce corps de nombres, en impliquant des quantités plus petites.

En outre, la connaissance d’un tel polynôme permet l’utilisation d’algorithmes plus efficaces

que dans le cas général pour calculer le groupe de classes.

L’algorithme général pour calculer la structure du groupe de classes repose sur la réduction

d’idéaux, vus comme des réseaux. Nous décrivons et simplifions l’algorithme présenté par

Biasse et Fieker en 2014 à ANTS et approfondissons l’analyse de complexité. Nous nous

sommes aussi intéressés au cas des corps de nombres définis par un polynôme à petits

coefficients. Nous décrivons un algorithme similaire au crible par corps de nombres (NFS)

dont la complexité en fonction des paramètres du corps de nombres peut atteindre L
(1

3

)
.

Enfin, nos algorithmes peuvent être adaptés pour résoudre un problème lié : le Problème

de l’Idéal Principal. Étant donné n’importe quelle base d’un idéal principal (généré par un

seul élément), nous sommes capables de retrouver ce générateur. Cette application de nos

algorithmes fournit une attaque efficace contre certains schémas de chiffrement homomorphe

basés sur ce problème.

iii

Contents

Abstract i

(French) Résumé iii

(French) Introduction 1

1 Motivation . 1

2 Organisation de la thèse et résultats . 6

Introduction 13

1 Motivation . 13

2 Contributions & Organization . 17

I Preliminaries 23

1 Algebraic Number Theory Tools 25

1.1 Linear algebra & Lattices . 26

1.2 Number fields & Polynomials . 31

1.3 Orders & Ideals . 38

1.4 Norms & Smoothness . 41

1.5 Ideal classes & Units . 48

2 Previous work on class group computations and related problems 53

2.1 Exponential strategies for quadratic number fields 54

2.2 Class group generation . 60

2.3 Subexponential complexity, using index calculus method 61

2.4 Algorithms related to number fields . 69

v

Contents

II Reducing the complexity of Class Group Computation 73

3 Reduction of the defining polynomial 75

3.1 Motivations and link with class group computation 76

3.2 An optimal algorithm for NF defining polynomial reduction 79

3.3 Complexity analysis . 84

3.4 Application to class group computation . 87

4 Refinements for complexities appearing in the literature for the general case 93

4.1 The classification defined by classes D is sufficient 94

4.2 The relation collection . 97

4.3 Complexity analyses . 102

4.4 Using HNF to get an even smaller complexity . 104

5 Reducing the complexity using good defining polynomials 109

5.1 Motivation . 110

5.2 Deriving relations by sieving . 111

5.3 Complexity analyses . 114

5.4 Conclusion on sieving strategy . 118

5.5 Application to Principal Ideal Problem . 119

III Applications to Cryptology 129

6 PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme 131

6.1 Situation of the problem and cryptosystems that rely on SPIP 132

6.2 Solving the PIP or how to perform a full key recovery? 134

6.3 Description of the algorithm . 135

6.4 Complexity analysis . 145

6.5 Implementation results . 146

Bibliography 151

vi

Introduction

1 Motivation

Cryptographie. La cryptographie moderne se divise en deux grandes sous-familles. La plus

ancienne est la cryptographie symétrique. L’idée principale est que l’émetteur et le desti-

nataire d’un message partagent un secret commun, appelé clé secrète. En 1976, Diffie et

Hellman introduisent la cryptographie asymétrique — aussi appelée cryptographie à clé pu-

blique — dans leur article intitulé New Directions in Cryptography [DH76]. L’avancée ma-

jeure est que rien ne doit être partagé par l’émetteur et le destinataire : ce dernier génère

un couple (clé privée, clé publique), garde la clé privée secrète et rend publique la

clé publique. Alors l’émetteur est capable de chiffrer un message grâce à la clé publique,

et seul le destinataire peut le déchiffrer, grâce à sa clé privée.

La cryptographie asymétrique repose sur des problèmes calculatoires difficiles. Elle n’est

donc utilisée en général que pour le transfert d’une clé secrète. Cette clé secrète sera alors

utilisée dans un schéma symétrique pour chiffrer une séquence de messages plus longs. La

cryptographie symétrique repose sur des algorithmes plus simples et plus rapides.

La cryptographie est utilisée pour différents aspects de la sécurité. Le principal — et his-

toriquement le premier — est la confidentialité. Mais elle peut aussi fournir des résultats

d’intégrité, en détectant une altération des données transmises, et d’authentification, pour

assurer l’identité de l’émetteur. Dans ce sens, les primitives cryptographiques peuvent être uti-

lisées pour chiffrer/déchiffrer, mais aussi adaptées pour en faire des algorithmes de signatures

électroniques. Nous ne nous sommes pas intéressés à ces aspects pratiques dans cette thèse :

nous considérons uniquement les problèmes mathématiques sous-jacents aux schémas que

nous étudions.

Cryptographie asymétrique. Une analogie simple pour expliquer le chiffrement asymé-

trique est celle d’une boîte à lettres. Celle-ci est accessible à n’importe qui et sa localisation

(l’adresse postale) est ce qui correspond à la clé publique. N’importe qui connaissant l’adresse

1

Introduction

postale peut aller y déposer une lettre. Au contraire, seule la personne qui possède la clé de

cette boîte à lettres peut l’ouvrir et récupérer la lettre.

Les primitives asymétriques reposent principalement sur des fonctions à sens unique :

faciles à calculer pour n’importe quelle entrée, mais difficiles à inverser en connaissant l’image

d’une entrée aléatoire. Les mots “facile” et “difficile” doivent être ici compris au sens calcu-

latoire du terme, c’est-à-dire qu’il existe un algorithme en temps polynomial pour un sens,

mais pas pour son inverse. Pour revenir à l’analogie de la boite à lettres, il est facile de glisser

une enveloppe dans la boîte alors qu’il est quasiment impossible de l’en faire ressortir sans

l’ouvrir. Plusieurs candidats existent pour ces fonctions à sens unique. Nul ne sait vraiment si

ces fonctions sont effectivement à sens-unique, mais elles sont communément considérées

comme telles, au regard des recherches infructueuses effectuées jusqu’ici pour trouver un

algorithme inverse efficace.

Le premier problème difficile que nous mettons en avant est celui de la factorisation des

entiers. Soient p et q deux grands nombres premiers. Il est facile d’en calculer le produit

n = pq , alors qu’à l’opposé, étant donné n, il est très difficile de retrouver p et q . Ce problème

est à la base du premier schéma de chiffrement à clé publique RSA, introduit en 1978 par

Rivest, Shamir et Adleman [RSA78] et toujours très répandu de nos jours. Un autre exemple

de schéma basé sur le problème de la factorisation des entiers a été introduit par Paillier

en 1999 [Pai99].

Le second problème difficile que nous introduisons est celui du logarithme discret (DLP) :

étant donné un groupe cyclique G dont g est un générateur et un élément aléatoire h ∈ G ,

trouver un exposant x ∈ Z tel que h = g x . La cryptographie basée sur le problème du logarithme

discret est très répandue de nos jours et les groupes sont devenus une structure essentielle en

cryptographie. Les premières descriptions de ce problème utilisaient le groupe multiplicatif

d’un corps fini. Ce fut le cas par exemple de l’échange de clés Diffie-Hellman [DH76] et du

chiffrement ElGamal [ElG84, ElG85]. Cependant, ces corps possèdent tellement de structure

que les tailles requises pour des applications cryptographiques sont relativement grandes.

En 1985, Koblitz [Kob87] et Miller [Mil85] ont indépendamment proposé l’utilisation des

courbes elliptiques en cryptographie. Le premier avantage de ces courbes est une réduction

de la taille des clés, ce qui limite l’espace de stockage requis et les transmissions nécessaires.

Par exemple, une clé publique de 256 bits pour une courbe elliptique apporte une sécurité

comparable à celle d’une clé publique de 3072 bits pour un chiffrement RSA. La cryptographie

à base de courbes elliptiques a gagné en popularité ces dix dernières années et a ensuite été

étendue aux Jacobiennes de courbes de genre supérieur.

2

1. Motivation

Chiffrement Homomorphe. Le chiffrement homomorphe est une forme de chiffrement

qui permet d’effectuer des opérations directement sur les textes chiffrés, générant ainsi un

résultat qui, une fois déchiffré, est égal au résultat des mêmes opérations sur les textes clairs.

Mener ces calculs sur des données chiffrées permet de traiter des données sensibles sans

révéler aucune information sur le propriétaire. Une application possible serait par exemple

de calculer à distance dans le Cloud. RSA et ElGamal sont deux exemples de schémas de

chiffrement multiplicativement homomorphe, alors que Paillier est un schéma de chiffrement

additivement homomorphe.

Un cryptosystème qui permet de réaliser n’importe quelle séquence d’opérations est dit

complètement homomorphe (FHE) et est beaucoup plus puissant. La proposition présentée

par Boneh, Goh et Nissim dans [BGN05] a été la première à permettre à la fois additions et mul-

tiplications. Cette solution a tout de même un inconvénient, puisqu’une seule multiplication

est possible. Ce type de schéma est dit partiellement homomorphe.

Gentry décrit en 2009 la première construction complètement homomorphe, en utilisant

de la cryptographie basée sur les réseaux [Gen09]. Son schéma, inspiré de NTRU [HPS98],

permet de mixer à la fois additions et multiplications sur les textes chiffrés, à partir desquelles

il est possible de réaliser n’importe quel calcul. Ce résultat important a entrainé la présentation

de nouvelles techniques. Les plus connues ont été proposées par Brakerski, Gentry et Vaikunta-

nathan [BGV12], Fan et Vercauteren [FV12], Bos, Lauter, Loftus et Naehrig (YASHE) [BLLN13]

et Khedr, Gulak et Vaikuntanathan (SHIELD) [KGV16].

Cryptographie Post-Quantique. L’ordinateur quantique pourrait un jour devenir une réalité.

Quand ce jour viendra, la sécurité de plusieurs primitives utilisées de nos jours — comme

RSA ou le DLP — s’effondrera et elles deviendront obsolètes. En effet, il existe un algorithme

quantique, l’algorithme de Shor [Sho97], qui est capable de résoudre ces problèmes en temps

polynomial, sur un ordinateur quantique suffisamment puissant.

Heureusement, un ordinateur quantique d’une telle puissance n’existe pas. Mais certains

experts — pas tous — s’accordent sur le fait, qu’un jour, dans le futur, un tel ordinateur

existera. La cryptographie post-quantique comprend tous les schémas considérés comme sûrs

contre les attaques menées par un ordinateur quantique. Elle est différente de la cryptographie

quantique, qui regroupe les schémas qui font l’usage de phénomènes quantiques.

Plusieurs problèmes difficiles ont été proposés pour la cryptographie post-quantique, et

les solutions les plus étudiées peuvent être divisées en quatre familles :

3

Introduction

• la cryptographie basée sur les réseaux : NTRU [HPS98], (R)LWE [Reg05, Pei09, LPR13],

GGH [GGH13]

• la cryptographie basée sur les codes correcteurs : McEliece [McE78]

• la cryptographie multivariée : C* [MI88], UOV [KPG99]

• la cryptographie basée sur les isogénies entre courbes elliptiques supersingulières :

SIDH [JF11, FJP14]

Les cryptosystèmes qui nous intéressent dans cette thèse appartiennent à la catégorie des

schémas basés sur les réseaux, et plus précisément des réseaux particuliers : les réseaux-idéaux.

Parallèlement, nous évoquons SIDH un peu plus loin dans cette introduction.

Théorie Algébrique des Nombres. Grâce à l’avènement du chiffrement totalement homo-

morphe et de la cryptographie post-quantique, la Théorie Algébrique des Nombres devient de

plus en plus populaire en cryptologie. En effet, l’utilisation des réseaux a permis de construire

des cryptosystèmes totalement homomorphe et résistant aux attaques quantiques. Parmi les

réseaux les plus utilisés en cryptographie apparaissent les réseaux-idéaux, des réseaux avec

une structure additionnelle, comme ils proviennent d’un idéal dans un corps de nombres.

Ce choix est motivé par le fait que leur utilisation permet de réduire à la fois le stockage

nécessaire et les temps de calculs. Par exemple, Smart et Vercauteren [SV10] ont proposé une

instanciation pratique du résultat théorique de Gentry [Gen09], dans les corps cyclotomiques

de dimension une puissance de deux. La sécurité de ce schéma repose sur la difficulté de

trouver un petit générateur d’un idéal principal (un idéal généré par un unique élément).

Les solutions à ce problème font naturellement appel aux méthodes utilisées pour calculer

le groupe de classes d’un corps de nombres, en raison de la nature des structures qui sont

impliquées.

Parallèlement, les groupes de classes ont déjà une histoire avec la cryptographie. En 1988,

Buchmann et Williams [BW88] ont proposé une variante de l’échange de clés Diffie-Hellman

dans des groupes de classes de corps quadratiques imaginaires. En effet, en tant que groupes

finis, ils sont des candidats légitimes au problème du logarithme discret. La différence majeure

dans ce cas est que l’ordre du groupe est inconnu, ce qui n’est pas un problème insurmontable.

Il existe aussi une variante à DSA (Algorithme de Signature Digitale) [Sch91] pour les signatures,

appelée RDSA — le “R” vient du fait que le schéma de signature est basé sur la difficulté de

trouver la racine e-ième d’un élément. Un autre schéma, NICE [PT00], utilise les idéaux d’un

corps quadratique imaginaire. Le secret est un nombre premier p et la clé publique correspond

4

1. Motivation

à un idéal dans l’ordre d’indice p. La sécurité repose donc essentiellement sur la difficulté de

factoriser le discriminant de l’ordre, qui est de la forme p2q , pour un nombre premier q .

Tous ces cryptosystèmes ont d’abord été décrits pour un corps quadratique imaginaire.

Une raison est que ces corps sont connus pour avoir un gros groupe de classes — de la taille

de la racine carré du discriminant du corps. Il existe des généralisations au cas des corps

quadratiques réels, où les unités jouent en général le rôle principal (voir [BBT94, SBW94]

pour plus de détails). Finalement, à l’orée des années 2000, sont apparues dans la littérature

des généralisations en degré arbitraire. En plus de la hausse des temps de calcul liée à la

dimension élevée, les applications requièrent la connaissance de corps de nombres ayant un

gros groupe de classes. De tels résultats ont été fournis par Stender [Ste75] pour les degrés 3, 4

et 6, Buchmann [Buc87] pour le degré 4, Emma Lehmer [Leh88] pour le degré 5, etc.

Groupes de classes. Une réponse légitime à la question “Pourquoi calculer des groupes de

classes ?” est “Parce que Gauss l’a fait.”. En effet, calculer des groupes de classes est un problème

mathématique intéressant qui mérite d’être un but à lui tout seul. Leur étude a déjà mené à

des découvertes majeures en théorie algorithmique des nombres. Le résultat le plus célèbre est

sans nul doute l’algorithme Pas de bébés – Pas de géants, introduit en 1969 par Shanks [Sha69].

Cet algorithme est connu pour être asymptotiquement optimal pour la résolution du DLP

dans un groupe générique (sans structure particulière). Et il a été découvert dans le cadre du

calcul du groupe de classes ! En effet, Shanks décrit à l’origine cette méthode pour calculer le

nombre de classes d’un corps quadratique imaginaire. Il existe aussi des algorithmes pour la

factorisation d’entiers basés sur le calcul du groupe — ou au moins d’un sous-groupe — de

classes d’un corps quadratique (voir [Coh93, Sections 8.6 & 10.2]).

Les groupes de classes ont aussi eu un impact marquant dans une des premières preuves

partielles du Grand Théorème de Fermat :

Théorème. Il n’existe pas d’entiers non-nuls x, y et z tels que xn + yn = zn dès que n ≥ 3.

La preuve fournie par Fermat couvre le cas n = 4 et montre qu’il suffit, pour résoudre le

problème, de s’intéresser à l’équation xp + y p = zp , avec p premier et x, y , z deux-à-deux

premiers entre eux. La première preuve générique nous vient de Sophie Germain qui prouva

le cas où x, y et z ne sont pas des multiples de p, pour tout premier p tel que 2p + 1 soit

aussi premier : les nombres premiers de Sophie Germain. Avant la preuve totale apportée par

Wiles [Wil95] en 1994 — qui utilise des courbes elliptiques — de nombreuses preuves ont été

proposées. En 1848, Lamé utilise les racines de l’unité, nombres complexes vérifiant ζp = 1,

pour décomposer

xp + y p = (x + y)(x +ζy)(x +ζ2 y) · · · (x +ζp−1 y). (1)

5

Introduction

Néanmoins, sa preuve n’est pas valide, puisqu’elle suppose l’unicité de la factorisation dans

un corps cyclotomique. Kummer introduit alors une notion proche des idéaux pour obtenir le

résultat de décomposition unique en idéaux premiers. Cela permit de compléter la preuve de

Lamé pour l’ensemble des premiers réguliers.

Définition. Un nombre premier est dit régulier si l’ordre du groupes de classes de Q(ζ) n’est

pas un multiple de p, pour ζ 6= 1 tel que ζp = 1.

En combinant l’Équation (1) et xp + y p = zp , il apparaît que chaque idéal généré par

(x+ζk y), pour 1 ≤ k ≤ p−1, est une puissance p-ième d’un idéalak . Pour un premier régulier p,

comme p ne divise pas l’ordre du groupe de classes, le fait que l’idéal ap
k soit principal entraîne

que l’idéal ak est aussi principal. Ce point est le point crucial de la preuve, le reste ne consiste

qu’à réécrire x +ζy de sorte qu’une contradiction apparaisse.

Nous ne savons toujours pas s’il existe ou non une infinité de nombres premiers réguliers.

Jensen a prouvé en 1915 qu’une infinité de premiers ne sont pas réguliers. Cependant, il est

communément admis que les premiers réguliers ont une densité e−
1
2 asymptotiquement, ce

qui représente environ 60% des premiers (il s’agit d’une conjecture de Siegel datant de 1964 qui

n’a toujours pas été prouvée). Par exemple, Kummer avait identifié que les premiers irréguliers

plus petits que 100 sont 37, 59 et 67.

2 Organisation de la thèse et résultats

Le but de cette thèse est d’étudier et d’améliorer le calcul du groupe de classes mais aussi

d’aborder certaines applications à la cryptologie.

Nous présentons dans le Chapitre 1 les outils mathématiques nécessaires à la bonne

compréhension de la suite du manuscrit. Nous donnons par exemple les définitions du groupe

de classes et des unités d’un corps de nombres, afin de se familiariser avec les objets que nous

cherchons à calculer. Un rappel succinct sur les réseaux euclidiens est aussi inclus, puisqu’ils

représentent une partie essentielle de notre travail.

Le Chapitre 2 est consacré à l’historique du groupe de classes, depuis Gauss jusqu’à l’état

de l’art actuel. C’est l’occasion d’introduire des méthodes connues, parfois associées à des

problèmes différents qui ont été plus étudiés que le groupe de classes. Nous décrivons le

chemin allant des corps quadratiques jusqu’aux corps de nombres de degrés arbitraires.

Dans le Chapitre 3, nous décrivons un algorithme pour trouver un polynôme de définition

d’un corps de nombres avec des petits coefficients. En effet, il existe une infinité de polynômes

6

2. Organisation de la thèse et résultats

de définition pour un corps de nombres fixé, mais utiliser celui qui a les coefficients les plus

petits possible est généralement le meilleur choix. Nous présentons l’algorithme ainsi que

l’analyse de sa complexité et étudions son impact dans le cadre du calcul du groupe de classes.

Nous remarquons qu’en le considérant comme un pré-calcul, il permet d’étendre un résultat

de Biasse et Fieker [BF14] a de plus grandes classes de corps de nombres (de petits degrés).

Dans le Chapitre 4, nous nous intéressons à l’algorithme générique pour le calcul du

groupe de classes. Cet algorithme est utilisé lorsque nous ne connaissons pas de polynôme

de définition à petits coefficients, ou qu’il est trop coûteux d’en chercher un. Inspiré d’un

résultat de Biasse et Fieker [BF14], nous donnons une version simplifiée de leur algorithme et

améliorons leur analyse de complexité afin d’identifier les paramètres optimaux pour réduire

le temps de calcul.

Dans le Chapitre 5, nous nous concentrons sur les améliorations possibles lorsqu’un

polynôme de définition à petits coefficients est connu. Dans ce cas, nous sommes capables de

proposer un algorithme dont le temps de calcul est considérablement réduit par rapport à

l’algorithme générique. Nous donnons aussi un résultat pour un problème lié, le Problème de

l’Idéal Principal (PIP) : étant donné une base d’un idéal principal, c’est-à-dire généré par un

unique élément, il est difficile d’en trouver un générateur.

Finalement, dans le Chapitre 6, la cryptanalyse d’un schéma de chiffrement totalement

homomorphe est présentée. Cette attaque se base sur la résolution du problème de l’idéal

principal pour un petit générateur, dans un corps cyclotomique d’indice une puissance d’un

nombre premier. Ce cryptosystème a été décrit par Smart et Vercauteren à PKC en 2010 [SV10]

comme une instanciation pratique du schéma FHE de Gentry [Gen09]. Nous tirons profit de

la structure de corps cyclotomique pour réduire la dimension du problème puis utilisons

les techniques décrites au Chapitre 5 pour retrouver un générateur. La dernière étape, qui

consiste à dériver de ce générateur arbitraire un petit générateur, a déjà été résolue par Cramer,

Ducas, Peikert et Regev et présentée à EUROCRYPT en 2016 [CDPR16].

Publications

Les résultats que nous avons obtenus durant cette thèse ont mené à la publication d’articles

dans des conférences et journaux internationaux. Ce manuscrit ne reprend que les quatre

premiers de la liste suivante, puisqu’ils sont ceux qui concernent le calcul du groupe de classes.

Ils correspondent respectivement aux Chapitres 3, 4, 5 et 6. Nous discutons brièvement les

deux autres dans la section suivante.

7

Introduction

[GJ16] Reducing number field defining polynomials : an application to class group computations

avec Antoine Joux, LMS Journal of Computation and Mathematics & ANTS XII, 2016.

[GJ17a] On the complexity of class group computations for large-degree number fields

avec Antoine Joux, En cours de soumission.

[GJ17b] Reducing the complexity for class group computations using small defining polynomials

avec Antoine Joux, En cours de soumission.

[BEF+17] Computing generator in cyclotomic integer rings — A subfield algorithm for the Principal

Ideal Problem in L(1/2) and application to the cryptanalysis of a FHE scheme

avec Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque et Paul Kirchner,

EUROCRYPT 2017.

[GKL17] Parametrizations for families of ECM-friendly curves

avec Thorsten Kleinjung et Arjen K. Lenstra, ISSAC 2017.

[GW17] Loop-abort faults on supersingular isogeny cryptosystems

avec Benjamin Wesolowski, PQCrypto 2017.

Résultats complémentaires

ECM. L’algorithme de factorisation d’entiers par les courbes elliptiques (ECM) a été intro-

duit par H.W. Lenstra en 1985 et publié deux ans plus tard dans [Len87]. Cette méthode est

asymptotiquement la plus rapide pour trouver des facteurs relativement petits d’un gros entier

composé. Bien que le crible par corps de nombres [LL93] soit l’algorithme le plus efficace

génériquement pour la factorisation, il existe deux cas d’usage classique pour ECM : il est

communément utilisé pour trouver des facteurs d’un gros entier lorsque la taille des facteurs

premiers n’est pas connue (Propper a trouvé le plus gros jusqu’ici, un facteur de 274 bits

de 7337 +1) et il est utilisé dans l’étape de co-factorisation du crible par corps de nombres (où

beaucoup de nombres composés de taille relativement petite doivent être factorisés).

Étant donné un nombre composé impair N à factoriser, ECM réalise des opérations

arithmétiques sur des courbes elliptiques, que nous considérons comme définies sur le corps

fini Fp de cardinal p, pour un diviseur premier inconnu p de N . L’algorithme identifie p si

le cardinal d’au moins une de ces courbes définies sur Fp est lisse, c’est-à-dire qu’il est le

produit de petits nombres premiers. Pour cette raison, les courbes utilisées sont connues pour

avoir des propriétés de lissité favorables, comme par exemple un gros groupe de torsion sur Q

ou un cardinal divisible par un facteur fixé. Des constructions de courbes adaptées à ECM

8

2. Organisation de la thèse et résultats

ont été publiées par Suyama [Suy85] (avec une légère amélioration par Montgomery [Mon87,

Section 10.3.2]), Atkin-Morain [AM93] et généralisées par Bernstein et al. dans [BBL10].

Bien que l’algorithme ait été initialement formalisé en utilisant des courbes de Weiers-

trass dans [Len87], jusqu’en 2008 les implémentations utilisaient généralement l’approche de

Montgomery décrite dans [Mon87]. Avec l’introduction des courbes d’Edwards [Edw07] dont

les propriétés ont été étudiées par Bernstein et al. [BBJ+08, BBLP13], les courbes d’Edwards

tordues avec a=−1 et un groupe de torsion isomorphe à Z/2Z×Z/4Z sont parmi les courbes

les plus adaptées à l’algorithme ECM, comme le montre Berstein et al. dans [BBL10]. Pour

ces courbes, Barbulescu et al. [BBB+12] ont identifié trois familles ayant une probabilité plus

élevée d’avoir un cardinal lisse et une quatrième famille encore meilleure. Ils fournissent aussi

une paramétrisation pour l’une des trois familles équivalentes, les autres étant seulement

illustrées par un nombre fini de courbes construites à la main. En particulier, une paramétrisa-

tion pour la quatrième et meilleure famille n’avait pas été trouvée. Par paramétrisation, nous

entendons la donnée d’une courbe et d’un point de non-torsion sur cette courbe, construite à

partir d’une fonction dont l’entrée peut être un point sur une autre courbe elliptique ou un

rationnel, nous fournissant alors des paramétrisations elliptiques ou rationnelles.

Nous avons amélioré les résultats de [BBB+12] en fournissant six nouvelles paramétrisa-

tions rationnelles puis utilisé trois d’entre elles pour formaliser cinq nouvelles paramétrisa-

tions elliptiques qui nous permettent de générer rapidement des courbes pour chacune des

quatre familles identifiées dans [BBB+12]. Nous avons mené les mêmes tests que [BBL10]

pour la famille qui, étant donné ses propriétés galoisiennes, est la plus prometteuse. Selon les

critères pratiques de [BBL10], l’utilisation de cette nouvelle famille apporte des gains de l’ordre

de 1 à 2% comparés aux meilleures courbes connues jusqu’ici, avec un écart extrêmement

faible entre les courbes de cette même famille. Cela montre que notre nouvelle paramétrisa-

tion devrait apporter un gain pratique dans l’étape de co-factorisation du crible par corps de

nombres.

SIDH. Les schémas cryptographiques basés sur les isogénies entre courbes elliptiques su-

persingulières sont introduits par Charles, Lauter et Goren dans [CLG09], qui étudient la

difficulté de trouver un chemin dans les graphes d’isogénies des courbes supersingulières

et fournissent comme application une fonction de hachage cryptographique. Ce problème

a depuis été utilisé pour d’autres systèmes tels que l’échange de clés et le chiffrement par

Jao et De Feo [JF11]. Plusieurs autres primitives basées sur les isogénies supersingulières

ont suivi, comme les preuves de connaissance à divulgation nulle de connaissance ou les

signatures [FJP14, GPS16, JS14, STW12]. Des implémentations efficaces de ces primitives ont

9

Introduction

aussi été publiées : en logiciel [CLN16, SIDH], en matériel [KAKJ17] et en systèmes embar-

qués [KJA+16].

Si la version basique de l’échange de clés utilise des clés éphémères (comme c’est le cas

pour Diffie-Hellman), d’autres schémas nécessitent l’utilisation d’une clé statique pour au

moins un des participants. Ces secrets statiques constituent la matière première pour les

attaques dites actives, et une telle attaque a déjà été décrite dans [GPST16]. Elle permet de

retrouver les n bits de la clé secrète en environ n interactions avec la victime. Cette attaque

peut être bloquée grâce à la méthode de validation de Kirkwood et al. [KLM+15], qui n’est

en fait qu’une transformée de Fujisaki–Okamoto [FO99] appliquée au contexte des isogénies

supersingulières.

Les résultats de [KJA+16], ajoutés au fait que les primitives basées sur les isogénies su-

persingulières possèdent des tailles de clés bien inférieures à celles des autres candidats au

post-quantique, suggèrent que ces primitives sont particulièrement adaptées aux systèmes

embarqués. Cela ouvre la porte à de potentielles attaques par canaux auxiliaires.

Nous avons décrit la première attaque par canaux auxiliaires contre les primitives basées

sur les isogénies supersingulières. Cette attaque exploite l’injection d’une faute de type sortie

prématurée de boucle, précédemment introduite pour la cryptographie basée sur les couplages.

La structure itérative du calcul des isogénies rend le schéma vulnérable aux attaques par sortie

prématurée, permettant à un attaquant de retrouver les n bits de la clé en O(n) interactions

avec le jeton, pour une complexité négligeable. Aucune des contremesures introduites pour

les cryptosystèmes basés sur les isogénies ne permet de se prémunir de cette attaque. Les

fautes par sortie prématurée ont été prouvées applicables en pratique [BGG+14] et doivent

donc être considérées comme une menace sérieuse lorsque ces schémas sont implémentés

dans un contexte vulnérable aux attaques physiques.

10

Introduction

1 Motivation

Cryptography. Modern cryptography can be divided into two main areas. The oldest one

is Symmetric-Key Cryptography. Symmetric primitives require both the sender and the re-

cipient of a message to share a common secret, called the secret key. In 1976, Diffie and

Hellman proposed Public-Key Cryptography in their article entitled New Directions in Cryptog-

raphy [DH76]. The breakthrough is that nothing needs to be shared between the sender and

the recipient: the recipient generates a pair (private-key, public-key), keeps secret the

private-key, and releases the public-key. Then the sender is able to encrypt the message

using the public-key so that only the recipient can decrypt it, thanks to the private-key.

Public-key cryptography — also called asymmetric cryptography — is computationally

more complex so it is generally used only for the transfer of a symmetric encryption key. This

symmetric key is then used to encrypt the rest of the potentially long sequence of messages.

Symmetric cryptography is based on more ad hoc algorithms and is much faster.

Cryptography is used to tackle different aspects of security. The main one — and histor-

ically the first — is certainly the confidentiality. However, cryptography also provides data

integrity, which detects any alteration of the data, and authentication, which ensures to the

recipient the sender’s identity. Therefore, cryptographic primitives can be used for encryp-

tion/decryption, but also adapted for digital-signature schemes. We do not focus on these

practical aspects in this thesis: we only consider the underlying mathematical problems of the

schemes we look at.

Public-Key Cryptography. An analogy to public-key encryption is that of a locked mailbox

with a mail slot. The mail slot is exposed and accessible to the public — its location (the street

address) is, in essence, the public key. Anyone knowing the street address can go to the door

and drop a written message through the slot. However, only the person who possesses the key

can open the mailbox and read the message.

13

Introduction

Asymmetric primitives are essentially based on one-way functions, functions that are easy

to compute on every input, but hard to invert, given the image of a random input. Here,

“easy” and “hard” are to be understood in the sense of computational complexity theory, which

means that there exists a polynomial-time algorithm for one operation, but not for the inverse.

Back to the analogy with the mailbox, it is easy to put an envelope in the mailbox, whereas

the difficult part is to remove it without opening the mailbox. There exist several candidates

for one-way functions. It is not known whether these functions are indeed one-way, but we

commonly rely on the fact that extensive research has so far failed to produce an efficient

inverting algorithm.

The first hard problem we want to describe is the integer factorization problem. Let p and q

be two large prime numbers. It is easy to multiply them and find n = pq . However, given n,

it is very hard to recover p and q . This is the foundation of the first public-key encryption

scheme RSA, introduced in 1978 by Rivest, Shamir, and Adleman [RSA78], and widely used

today. Another scheme based on factorization was introduced by Paillier in 1999 [Pai99].

The second problem we introduce is the Discrete Logarithm Problem (DLP): given a cyclic

group G together with a generator g and a random element h ∈G , find an exponent x ∈ Z such

that h = g x . Cryptography based on the DLP is very widespread so that suitable groups have be-

come an essential structure in cryptography. The first descriptions of this problem used a mul-

tiplicative group of a finite field. It was the case for Diffie-Hellman key exchange [DH76] and

ElGamal encryption [ElG84, ElG85]. However, these fields have so much structure that their

size must be very large to supply sufficient security. In 1985, Koblitz [Kob87] and Miller [Mil85]

independently proposed the usage of elliptic curves in cryptography. The primary benefit

promised by elliptic curve cryptography is a smaller key size, reducing storage and transmis-

sion requirements. For instance, a 256-bit elliptic curve public key should provide security

comparable to a 3072-bit RSA public key. Elliptic curve cryptography has gained in popularity

the last ten years and has been further extended to Jacobians of higher-genus curves.

Homomorphic Encryption. Homomorphic encryption is a form of encryption that allows

computations to be carried out on ciphertexts, thus generating an encrypted result which,

when decrypted, matches the result of the same operations performed on the plaintexts. Per-

forming computations on the encrypted data provides a way to share confidential information

without threatening the privacy of the owner, for instance in the context of cloud computing.

RSA and ElGamal are two examples of multiplicative homomorphic schemes, while Paillier’s

cryptosystem is an additive homomorphic scheme.

A cryptosystem that supports arbitrary computations on ciphertexts is known as Fully

Homomorphic Encryption (FHE) and is far more powerful. The cryptosystem devised by

14

1. Motivation

Boneh, Goh, and Nissim in [BGN05] was the first to allow both additions and multiplications.

There is a catch, however: only one multiplication is permitted. The system is thus called

somewhat homomorphic. Gentry, using lattice-based cryptography, described in 2009 the first

construction for a fully homomorphic encryption scheme [Gen09]. Gentry’s scheme, based

on NTRU [HPS98], supports both addition and multiplication operations on ciphertexts, from

which it is possible to construct circuits for performing any arbitrary computation. From this

result several new techniques followed. The best known were proposed by Brakerski, Gentry,

and Vaikuntanathan [BGV12], Fan and Vercauteren [FV12], Bos, Lauter, Loftus, and Naehrig

(YASHE) [BLLN13], and Khedr, Gulak, and Vaikuntanathan (SHIELD) [KGV16].

Post-Quantum Cryptography. One day, quantum computers might become a reality. When

that day comes, RSA, the DLP, and other fundamental cryptographic primitives would become

obsolete. Indeed, these problems can be easily solved on a sufficiently powerful quantum

computer running Shor’s algorithm [Sho97]. Luckily, such large quantum computers do not

exist yet. Still, some — but not all — experts agree that at one point in the future, they will exist.

Post-Quantum Cryptography refers to cryptographic primitives that are thought to be secure

against an attack by a quantum computer. It is distinct from Quantum Cryptography, which

refers to cryptosystems that use quantum phenomena.

Many hard problems have been proposed for post-quantum cryptography, but the most

promising solutions can be grouped in four families:

• Lattice-based cryptography: NTRU [HPS98], (R)LWE [Reg05, Pei09, LPR13], GGH [GGH13]

• Code-based cryptography: McEliece [McE78]

• Multivariate cryptography: C* [MI88], UOV [KPG99]

• Supersingular elliptic curve cryptography: SIDH [JF11, FJP14]

The cryptosystems we are interested in throughout this thesis belong to lattice-based

cryptography, and more precisely for special lattices: ideal-lattices. Still, we briefly address

SIDH later in this introduction.

Algebraic Number Theory. With the growing interest in Fully Homomorphic Encryption

and Post-Quantum Cryptography, Algebraic Number Theory gains in popularity. Indeed, using

lattices allows building cryptosystems that are fully homomorphic and quantum-resistant.

A non-negligible part of lattice-based cryptography relies on ideal-lattices; these are lattices

with additional structure, as they come from an ideal in a number field. This choice allows

more efficiency in the storage and the runtime of the algorithms. As an example, Smart and

15

Introduction

Vercauteren provide in [SV10] a practical instantiation of the theoretical result described by

Gentry in [Gen09], in the case of power-of-two cyclotomic fields. The foundation of this

scheme relies on the hardness to recover a small generator of a principal ideal (an ideal

generated by only one element). Solutions for this problem naturally involve methods closely

linked with class group computations, because of the building blocks used in that primitive.

Class groups also have a history with cryptography. Buchmann and Williams [BW88]

proposed in 1988 a variant of the Diffie-Hellman key exchange protocol in class groups of

imaginary quadratic number fields. Indeed, as finite groups, class groups are candidates for

the DLP. The major difference is that the group order is unknown, but this does not seem

to be a problem. There also exists a variant of DSA (Digital Signature Algorithm) [Sch91] for

signatures, called RDSA [HM00] — the “R” comes from the fact that the signature scheme is

based on the root problem, i.e., finding an e-th root of an element. Another scheme, NICE

(New Ideal Coset Encryption) [PT00], uses ideals in imaginary quadratic number fields. The

secret is a prime number p and the public key corresponds to an ideal in the order of index p.

Therefore, the security essentially relies on the difficulty to factor the discriminant of the order,

which is of the form p2q , for a prime number q .

All these cryptosystems were first described in the context of imaginary quadratic number

fields. A reason is that those fields are known to have large class groups — the size of the square

root of the discriminant of the field. Even though, there exist extensions to real quadratic

number fields, where most of the time units play an important role (see [BBT94, SBW94] for

more details). Finally, in the 2000s, generalizations to arbitrary-degree number fields appeared

in the literature [BBHM02, MNP01]. Besides the growth in the runtime due to the dimension,

practical application requires to actually identify families of number fields with large class

groups. This was done by Stender [Ste75] for degrees 3, 4, and 6, Buchmann [Buc87] for

degree 4, Emma Lehmer [Leh88] for degree 5, etc.

Class groups for mathematical purposes. A very consistent answer to the question “Why

do we compute class groups ?” is “Because Gauss did.”. Indeed, computing class groups is an

interesting mathematical problem that deserves to be a goal in itself, and their study has led to

important breakthroughs in algorithmic number theory. The most popular result is maybe the

Baby-Step–Giant-Step algorithm, introduced by Shanks in 1969 [Sha69]. It is known to be one

of the best — and asymptotically optimal — algorithms for solving the DLP in generic groups

(groups without particular structure). And it was first discovered for the computation of class

groups! Indeed, Shanks first described it in the context of class groups, for imaginary quadratic

number fields. Factorization algorithms can also be derived from computing class groups —

or at least a subgroup — in quadratic number fields (see [Coh93, Sections 8.6 & 10.2]).

16

2. Contributions & Organization

Class groups also had a significant impact on one of the first partial proofs of Fermat’s

Last Theorem:

Theorem. The equation xn + yn = zn has no non-trivial integer solutions for n ≥ 3.

Fermat’s proof only covers the case n = 4 and suggests that one may instead address the

equation xp + y p = zp for a prime number p and x, y , z pairwise relatively prime. The first

proof in any generality came from Sophie Germain, who proved the case where x, y , and z are

not multiples of p, for any prime p such that 2p+1 is also prime: the so-called Sophie Germain

primes. Before the complete proof provided by Wiles [Wil95] in 1994 — which uses elliptic

curves — many proofs were proposed. Lamé in 1848 used the complex numbers satisfying

ζp = 1, now known as roots of unity, to decompose

xp + y p = (x + y)(x +ζy)(x +ζ2 y) · · · (x +ζp−1 y). (1)

However, his proof was not valid as Lamé assumed that the unique factorization property

holds in the cyclotomic field Q(ζ). Then, Kummer introduced (a notion close to) ideals to

obtain the property of unique decomposition into prime ideals. This completed the proof for

regular primes.

Definition. A prime number p is said to be regular if the order of the class group of Q(ζ) is not

a multiple of p, for ζ 6= 1 such that ζp = 1.

Then, combining Equation (1) with xp + y p = zp implies that every ideal generated by

(x +ζk y), for 1 ≤ k ≤ p −1, is a p-th power of an ideal ak . For regular primes, as p does not

divide the cardinality of the class group, then the principality of ap
k implies that ak is also

principal. This trick is the key-point of the proof and the remaining part only consists in

writing x +ζy such that a contradiction arises.

It is still unknown whether or not there exist infinitely many regular primes. Jensen proved

in 1915 that infinitely many primes are irregular. However, the regular primes are believed

to have density e−
1
2 in the asymptotic sense of natural density, that is approximately 60 per

cent (it is a conjecture of Siegel that has not been proven since 1964). For instance, Kummer

noticed that the only irregular primes below 100 are 37, 59, and 67.

2 Contributions & Organization

The purpose of this thesis is to study and improve class group computations and to address

related cryptographic questions. We present in Chapter 1 the mathematical tools we use

in this thesis. We give the definitions of the class group and the units of a number field, in

17

Introduction

order to be familiar with the structures we want to compute. A brief reminder on lattices and

reduction is also included, as it is an essential part of our work. Chapter 2 is devoted to the

history of class group computations, from Gauss to the state of the art. It is an opportunity to

introduce methods that are now well known for problems that have been more thoroughly

studied than class group computations. We describe the path from quadratic number fields to

arbitrary-degree number fields over the years.

Our contributions to class group computations are presented in the three following chap-

ters. In Chapter 3, we describe an algorithm to find a small defining polynomial of a number

field. Indeed, there exist infinitely many polynomials defining a specific number field, but

working with the one that has the smallest coefficients is usually better. We present this algo-

rithm, along with its complexity analysis and study its impact in the context of class group

computations. We notice that, considered as a precomputation, it extends a result of Biasse

and Fieker [BF14] to wider classes of (small-degree) number fields.

In Chapter 4, we examine the general algorithm for class group computations. This one

is used when we do not have a small defining polynomial for the number field. Based on a

result of Biasse and Fieker [BF14], we simplify their algorithm, improve the complexity analysis

and identify the optimal parameters to reduce the runtime. In Chapter 5, we focus on the

conditional improvements made possible by a defining polynomial with small coefficients. In

that case, we are able to present an algorithm whose runtime is considerably smaller than in

the generic case. We also provide a result on finding a solution to the Principal Ideal Problem,

that is recovering a generator of an ideal, assuming it is principal.

Finally, in Chapter 6, the cryptanalysis of a Fully Homomorphic Encryption scheme is

presented. This attack corresponds to the solution of the Short Principal Ideal Problem in

prime-power cyclotomic fields. This cryptosystem was described by Smart and Vercauteren at

PKC 2010 [SV10] as a practical instantiation of the Gentry FHE scheme [Gen09]. We take advan-

tage of the cyclotomic-field structure to reduce the dimension and use techniques described

previously for recovering a generator. The final step that consists in deriving a short generator

was already addressed by Cramer, Ducas, Peikert, and Regev at EUROCRYPT 2016 [CDPR16].

Publications

The results we have obtained led to the publication of articles in international conferences

and journals. The thesis only tackles the first four of the following list, as they are the ones

focusing on class group computations. They correspond respectively to Chapters 3, 4, 5, and 6.

We briefly describe the other two in the next section.

18

2. Contributions & Organization

[GJ16] Reducing number field defining polynomials: an application to class group computations

with Antoine Joux, LMS Journal of Computation and Mathematics & ANTS XII, 2016.

[GJ17a] On the complexity of class group computations for large-degree number fields

with Antoine Joux, Submitted.

[GJ17b] Reducing the complexity for class group computations using small defining polynomials

with Antoine Joux, Submitted.

[BEF+17] Computing generator in cyclotomic integer rings — A subfield algorithm for the Principal

Ideal Problem in L(1/2) and application to the cryptanalysis of a FHE scheme

with Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, and Paul Kirchner,

EUROCRYPT 2017.

[GKL17] Parametrizations for families of ECM-friendly curves

with Thorsten Kleinjung and Arjen K. Lenstra, ISSAC 2017.

[GW17] Loop-abort faults on supersingular isogeny cryptosystems

with Benjamin Wesolowski, PQCrypto 2017.

Parallel contributions

ECM. The Elliptic Curve Method (ECM) for integer factorization was introduced in 1985 by

H.W. Lenstra and published two years later in [Len87]. It is the asymptotically fastest method

that has been published for finding relatively small factors of large composites. Although

the number field sieve [LL93] is the most efficient general algorithm for integer factorization,

there are two common use cases for ECM: it is widely used in attempts to find factors of large

composites for which no information is available about the sizes of the prime factors (Propper

found the largest ECM factor so far, a 274-bit factor of 7337 +1) and it is used for the so-called

cofactoring step of the number field sieve (where many relatively small composites have to be

factored).

Given an odd composite integer N to be factored, ECM performs arithmetic operations

on elliptic curves considered to be defined over the finite field Fp of cardinality p, for an

unknown prime divisor p of N . It may find p if the cardinality of at least one of these curves

over Fp is smooth. For this reason, we use curves that are known to have favorable smoothness

properties, such as a large torsion group over Q or a cardinality that is divisible by a fixed

factor. Constructions of ECM-friendly curves were published by Suyama [Suy85] (with a

slight improvement by Montgomery in [Mon87, Section 10.3.2]), Atkin-Morain [AM93], and

generalized by Bernstein et al. in [BBL10].

19

Introduction

Originally formulated in [Len87] using Weierstrass curves, until around 2008 implementa-

tions of ECM mostly used Montgomery’s approach from [Mon87]. With the introduction of

Edwards curves [Edw07], a number of follow-up papers by Bernstein et al. [BBJ+08, BBLP13]

ultimately led to “a=−1 twisted Edwards” curves by Hisil et al. [HWCD08] with torsion group

isomorphic to Z/2Z×Z/4Z as one of the current most efficient ways to implement ECM, as

shown by Bernstein et al. in [BBL10]. For these curves, Barbulescu et al. in [BBB+12] identify

three families that all have the same larger smoothness probability and an even better fourth

family. In [BBB+12] a parametrization is provided for one of the three equivalent families;

the others are only illustrated by — a finite set of — small values found by enumeration. In

particular a parametrization of the fourth and best family, which could lead to a better choice

of curves for ECM, has so far not been published. By parametrization we mean that an elliptic

curve along with a non-torsion point is determined as a function of some parameter: the

parameter may be a point on some other elliptic curve or a rational number, thus giving rise to

elliptic and rational parametrizations.

We extend the constructions from [BBB+12] by developing six further rational parametriza-

tions, and use three of them to formulate five new elliptic parametrizations that enable fast

generation of curves for all families of curves from [BBB+12]. We conduct the same tests

as described in [BBL10] for the family of curves that are, based on their Galois properties,

most promising for ECM. With respect to the criteria from [BBL10], usage of this family of

curves leads to slightly better performance of ECM than reported before, with no significant

fluctuations across curves from this same family. The newly parameterized curves may prove

to be most useful for ECM-based cofactoring in the number field sieve.

SIDH. Cryptographic schemes based on supersingular elliptic curve isogenies were intro-

duced in [CLG09] which proposed the hardness of path-finding in supersingular isogeny

graphs and gave an application to cryptographic hash functions. It has since been used as an

assumption for other cryptographic systems such as key-exchange and encryption [JF11]. Sev-

eral other primitives have subsequently been built based on supersingular isogeny problems,

such as zero-knowledge proofs of identity and signatures [FJP14, GPS16, JS14, STW12]. Effi-

cient implementations of these primitives have rapidly followed: in software [CLN16, SIDH],

in hardware [KAKJ17] and on embedded systems [KJA+16].

Even though the basic version of the key exchange protocol uses ephemeral secret val-

ues (as with classical Diffie-Hellman), some of these other schemes require static secret

keys for at least one party. Such static secrets constitute primary material for active attacks,

and such an attack was indeed described in [GPST16] that allows to find all n bits of the

secret key with about n interactions with the victim. This attack can be prevented by the

20

2. Contributions & Organization

Kirkwood et al. [KLM+15] validation method — which is essentially a Fujisaki–Okamoto

transform [FO99] applied in the context of supersingular isogenies.

The results of [KJA+16], together with the fact that primitives based on supersingular

isogenies enjoy significantly smaller keys than the other main candidates for post-quantum

cryptography, suggest that they might be well-suited for use on embedded devices. This opens

new avenues of potential side-channel attacks.

We describe the first side-channel attack against supersingular isogeny-based primitives,

exploiting a fault-injection technique known as loop-abort fault injection, previously intro-

duced for pairing based cryptography [PV06]. The iterative structure of isogeny computations

render them susceptible to loop-abort fault attacks, allowing an attacker to recover all n bits

of the key, within O(n) interactions with the token and a negligible amount of computa-

tion. This attack is not prevented by any of the validation methods previously discussed for

isogeny-based cryptosystems. Loop-abort fault injections were proven to be feasible in prac-

tice [BGG+14], and should therefore be taken into serious consideration when implementing

schemes based on supersingular isogenies in a context susceptible to physical attacks.

21

Part I

Preliminaries

23

Chapter 1

Algebraic Number Theory Tools

Contents

1.1 Linear algebra & Lattices . 26

1.1.1 Hermite and Smith Normal Forms . 26

1.1.2 Lattices . 28

1.1.3 Reduction algorithms . 28

1.2 Number fields & Polynomials . 31

1.2.1 Defining polynomials . 32

1.2.2 Complex embeddings . 32

1.2.3 Representations of algebraic numbers 33

1.2.4 Integral bases . 34

1.2.5 Discriminants . 35

1.3 Orders & Ideals . 38

1.4 Norms & Smoothness . 41

1.4.1 Norms in K . 41

1.4.2 Ideal norms . 43

1.4.3 Smooth integers . 44

1.4.4 Smooth ideals . 46

1.5 Ideal classes & Units . 48

1.5.1 The Class Group . 48

1.5.2 The Group of Units . 48

25

Chapter 1. Algebraic Number Theory Tools

The aim of this chapter is to familiarize the reader with the mathematical structures used

in the rest of the thesis. We recall some basic results from number theory that are required

for a proper understanding of the results presented in this thesis. This chapter is essentially

derived from [Coh93, Section 4].

1.1 Linear algebra & Lattices

Before we start dealing with number theory, we provide a brief summary about Hermite and

Smith Normal Forms. In addition, we give a reminder on lattices and reduction algorithms.

1.1.1 Hermite and Smith Normal Forms

Definition 1.1.1. An m×n matrix H with integer entries hi , j (1 ≤ i ≤ m,1 ≤ j ≤ n) is in Hermite

Normal Form (HNF) if:

• H is upper triangular, i.e., hi , j = 0 for i > j , and the all-zero rows are located below any

other row,

• The pivot — this is the first non-zero entry from the left — of a non-zero row is positive

and always strictly to the right of the pivot of the row above it,

• The elements above pivots are non-negative and strictly smaller than the pivot.

Proposition 1.1.2. For any m ×n matrix M with coefficients in Z, there exists a unique m ×n

matrix H in HNF of the form H =U M with U ∈ GLn(Z) unimodular.

Practically the computation of H is mainly performed modulo a large integer D: it is a

manner to avoid an explosion of the size of the coefficients — see [Coh93, Section 2.4.2]. We

only give one result about HNF computations because it is the one we use for our purposes.

However, there exists a lot of results depending on the inputs and the requirements — fast or

low-memory for instance.

In the following theorem, ‖M‖ = max |Mi , j | and ω denotes the matrix multiplication

exponent. The smallest known value is ω = 2.3728639 (see [Gal14]) but this result is only

theoretical. A naive way leads to ω = 3 while, in practice, we can make use of the Strassen

algorithm [Str69] where ω= log2 7 ≈ 2.807. The function B is defined such that B(t) bounds

the number of bit operations to solve both the extended Euclidean problem with two t-bit

integers and to apply the Chinese Remainder algorithm with moduli consisting of any two

coprime integers less of at most t bits.

26

1.1. Linear algebra & Lattices

Theorem 1.1.3 ([SL96, Theorem 12]). There exists a deterministic algorithm that takes as input

an m ×n rank-n integral matrix M, and produces as output the Hermite Normal Form H of M

together with a unimodular pre-multiplier matrix U that satisfies H =U A. The runtime of the

algorithm is bounded by

O

(
nω−1m log

(
2m

n

)
B

(
log

(
2m

n

)
n log(n‖M‖)

))
bit operations.

In addition, we have a bound on the pre-multiplier as log‖U‖ =O
(
log

(2m
n

)
n log(n‖M‖)

)
.

This algorithm also has good results in practice. The function B satisfies the inequality

B(t) ¿ t(log t)2 loglog t , which adds a lot of logarithmic factors. Omitting them, we find a

complexity that can be expressed as Õ
(
nωm log‖M‖) in practice, for any practically applicable

value of ω.

Besides being unique — and so being a representative of its equivalence class under

unimodular multiplication — the HNF of an integral matrix provides a basis for its image. Its

kernel is contained in the m −n last rows of the pre-multiplier matrix U .

Definition 1.1.4. An n ×n matrix S with integer entries si , j is in Smith Normal Form (SNF)

if S is a diagonal matrix with non-negative integer coefficients such that si ,i | si+1,i+1 for all

non-negative i < n.

Proposition 1.1.5. For any n ×n matrix M with coefficients in Z and rank n, there exists a

unique n×n matrix S in SNF of the form S =U MV with U ,V ∈ GLn(Z) unimodular. We denote

by di the i -th diagonal coefficient of S and the di are called elementary divisors of the matrix M.

The Smith Normal Form is generally used for computing the structure of a finite abelian

group. We know that every finite abelian group G is isomorphic to a direct sum of cyclic

groups
⊕

Z/di Z, with di | di+1. These di are exactly the elementary divisors greater than 1

of G , viewed as a Z-module. This is how we are going to derive the structure of the class group.

Basically, an efficient way to compute the SNF is to begin by computing the HNF. Then,

the cost comes down to the one of the HNF computation. Moreover, if we are only interested

in the elementary divisors greater than 1, we can even only consider the k ×k submatrix of the

HNF where hi ,i > 1 for i ≤ k and hi ,i = 1 for i > k. This submatrix is called the essential part

of H . In our context, this considerably reduces the size of the matrix involved.

Remark 1.1.6. The diagonal elements obtained after the HNF are usually not the elementary

divisors.

27

Chapter 1. Algebraic Number Theory Tools

Example 1.1.7.

M =
(

2 1

0 2

)
has elementary divisors 1 and 4, as

(
1 0

0 4

)
=

(
1 0

−2 1

)(
2 1

0 2

)(
0 −1

1 2

)
.

1.1.2 Lattices

A short definition we have for a lattice is the following one:

Definition 1.1.8. A lattice is a discrete additive subgroup of Rn .

In addition to this group structure, we provide a norm on Rn , usually the Euclidean norm.

This induces the definition of an associated quadratic form on the lattice, namely q : x 7→∑
x2

i ,

where the xi (1 ≤ i ≤ n) are the coordinates of x. Because a lattice is discrete, there necessarily

exists a non-zero vector — not unique1 — whose norm is minimal; this norm is called the first

minimum of the lattice and is denoted λ1(L) for a lattice L. This notion of shortness is the

keystone of lattices.

A basis for a lattice L is a set of linearly independent vectors b1, . . . ,br belonging to L such

that any vector in L can be written as a linear combination — with integer coefficients — of

the vectors bi . Any lattice L admits a basis, and the cardinality r is the same for all bases of

a given lattice. It is called the rank of the lattice and is equal to the dimension of the vector

subspace spanned by L in Rn .

Given a basis B of a rank-r lattice L of Rn , it can be represented by a r ×n matrix where

each row contains the coordinates of one vector in the basis. For two such bases B1 and B2,

because they define the same lattice, there exists a unimodular matrix U ∈ GLr (Z) such that

B2 =U B1. As a consequence, the determinant det
(
B tB

)
— where tB denotes the transpose

matrix — is independent of the choice of B . Since it is a positive number, we obtain the

following definition.

Definition 1.1.9. The determinant of the lattice L is defined as detL=
√

det
(
B tB

)
.

The matrix B tB itself is also important and is called the Gram matrix of the basis B . Indeed,

it is equivalent to look at the lattice spanned by the basis B with the Euclidean norm and to

look at the one defined by the trivial basis with the norm defined by the quadratic form B tB .

1.1.3 Reduction algorithms

Lattice reduction is a research area that is still very active nowadays. It consists in finding a

basis for a lattice L where the vectors are short and nearly orthogonal.

1If the vector v ∈L is minimal, then −v , which also belongs to L, is minimal as well.

28

1.1. Linear algebra & Lattices

The most common reduction algorithm is given in the work of Lenstra, Lenstra, and

Lovász [LLL82]. Given as input any basis B0 of a lattice and a parameter δ ∈ (0.25,1), it outputs

a δ-LLL-reduced basis B = (b1, . . . ,bn), i.e.,

∀i < j ,
∣∣< b j |b∗

i >∣∣ ≤ ‖b∗
i ‖2

2
, (1.1)

∀i , δ‖b∗
i ‖2 ≤ ‖b∗

i+1‖2 + < bi+1|b∗
i >2

‖b∗
i ‖2 , (1.2)

where <·| ·> denotes the inner product and the vectors b∗
i result from the Gram-Schmidt

orthogonalization of the basis B .

Let ‖B0‖ denote the bit-size of the input basis, that is the largest length of a basis vector

under the Euclidean norm. The complexity of LLL-reduction for an integer lattice of rank r and

dimension n is O
(
nr 5(log‖B0‖)3

)
. It is a polynomial complexity so this algorithm is reasonably

fast. However, using the special-case δ = 3
4 , the bound we obtain for the first vector of the

reduced basis is not so tight:

‖b1‖ ≤ 2
n−1

2 λ1(L). (1.3)

Most of the time, this bound suffices and in practice, for small dimension (n ≤ 40), the behavior

of the LLL algorithm is much better than what Equation (1.3) makes us think.

If we really want to determine the first minimum and a shortest vector in the lattice, we

need another method. This is the idea of enumeration algorithms, examined by Kannan

in [Kan83]. Of course, we cannot perform a full enumeration of the vectors in the lattice:

we begin by determining a set of candidates and enumerate them. This algorithm relies

on the concept of Hermite-Korkine-Zolotarev (HKZ) reduced basis, which is a basis defined

recursively by:

• the basis is size-reduced as in Equation (1.1),

• b1 realizes the first minimum λ1(L),

• the projection of the vectors b2, . . . ,br orthogonally to b1 form an HKZ reduced basis.

Hanrot and Stehlé [HS07, HS08] have improved this method to obtain a runtime in

Poly(log‖B0‖) · r r
2e +o(r). The gain on the quality of the output basis is then counterbalanced by

the complexity becoming exponential in the rank r .

BKZ-reduction. Schnorr introduced in 1987 the Block Korkine-Zolotarev (BKZ) reduction. It

is a balance between LLL and HKZ reductions. Roughly speaking, it consists in HKZ-reducing

blocks that correspond to sublattices of fixed rank. Then the algorithm becomes polynomial

29

Chapter 1. Algebraic Number Theory Tools

in the dimension, exponential in the block-size, and the shortness of the output-basis first

vector depends on the block-size. The current best algorithms are the slide-reduction by Gama

and Nguyen [GN08] and Dual-BKZ by Micciancio and Walter [MW16]. An accurate analysis of

BKZ is also provided by Hanrot, Pujol, and Stehlé in [HPS11]. Finally, we obtain the following

result:

Theorem 1.1.10. The smallest vector v output by the BKZ algorithm with block-size β has a

norm bounded by

‖v‖ ≤ β
n−1

2(β−1) · (detL)
1
n .

The algorithm runs in time Poly(n, log‖B0‖)
(3

2

)β/2+o(β)
, where B0 is the input basis.

Proof. The bound we get is a direct consequence of [MW16, Theorem 1]. We only replaced

the Hermite constant γβ by an upper bound in O
(
β
)
. The cost analysis is derived from a quick

study of [MW16, Algorithm 1], and the complexity of the Shortest Vector Problem (SVP) is below(3
2

)β/2+o(β)
operations, according to [BDGL16].

Cheon’s trick. In a note [CL15] of 2015, Cheon and Lee suggest to convert the basis of an

integer lattice having small determinant, to its HNF before reducing it. This method seems to

be folklore, but this note gives a detailed analysis and we refer to it as Cheon’s trick. We briefly

develop here the idea and derive corresponding bounds.

Lemma 1.1.11. Given (b1, . . . ,bn) a basis in HNF of an n-dimensional lattice L⊂ Rn , we have,

for any 1 ≤ i < n,

det[b1, . . . ,bi] ≤ det[b1, . . . ,bi+1] .

In particular, for any sublattice L′ generated by the m first vectors b1, . . . ,bm , we have

detL′ ≤ detL.

We remark that both the n-th root of the determinant and an exponential factor in n

appear in the bound of Theorem 1.1.10. In most cases, the term with the determinant prevails.

However, when the determinant is small, the approximation factor can be larger. The idea

behind Cheon’s trick is then to reduce a lattice of smaller dimension in order to reduce this ap-

proximation factor. We fix the block-size β≤ n and look at the output of BKZ performed on the

sublattice L′ generated by the m first vectors b1, . . . ,bm of an HNF basis. From Lemma 1.1.11,

we have

‖v‖ ≤β m
2β · (detL′)

1
m ≤β m

2β · (detL)
1
m .

30

1.2. Number fields & Polynomials

The condition we require on the determinant of the lattice is detL ≤ β
n2

2β : otherwise,

for every m ≤ n, the term (detL)
1
m is dominating. Assuming detL ≤ β

n2

2β , we identify the

optimal sub-dimension m in {β, . . . ,n} depending on β that minimizes this upper bound: it

corresponds to the balance between the two factors, that is m =
⌊√

2β logβ(detL)
⌉

. We fix m

to this value and we obtain the following corollary.

Corollary 1.1.12. For any integer lattice L ⊂ Rn of rank n such that detL ≤ β
n2

2β , using BKZ

reduction with block-size β along with Cheon’s trick permits to output a short vector v that

satisfies

logβ ‖v‖ ≤
√

2

β
logβ(detL)

(
1+o(1)

)
.

This algorithm runs in time Poly(n, log‖B0‖) · (3
2

)β/2+o(β)
.

Proof. We consider the sublattice of dimension m, for m as defined above. The condition

on the determinant of L ensures that our value of m is effectively lower than n. Then, by

Theorem 1.1.10 and Lemma 1.1.11, we have

‖v‖ ≤β m
2β · (detL)

1
m =β

p
(2/β) logβ(detL)

(
1+o(1)

)
,

which yields the announced result — the (1+o(1)) factor appears because of the integer

approximation of m.

Remark 1.1.13. Thanks to Corollary 1.1.12, we want to point out that choosing block-size

β = log(detL)
1
3 when it is smaller than n allows to describe an algorithm that runs in time

Poly(n, log‖B0‖) · (3
2

)β/2+o(β)
and outputs a vector of norm less than β

p
2β

(
1+o(1)

)
.

Reduction using the Gram matrix. In [EJ17], Espitau and Joux analyze approximate lattice

reduction, using the Gram Matrix. Precisely, they emphasize that when we work with real

lattices, it is better to make the approximations on the Gram matrix than on the Basis matrix.

They provide an implementation that is able to ensure that the output is exact as long as the

input precision is sufficient. It exits with error when the precision is insufficient.

1.2 Number fields & Polynomials

We begin number theory by giving the definition of a number field.

Definition 1.2.1. A number field K is a field containing Q which, considered as a Q-vector

space, is finite dimensional. The number n = dimQ K is denoted by [K : Q] and called the

extension degree — or simply degree — of the number field K.

31

Chapter 1. Algebraic Number Theory Tools

1.2.1 Defining polynomials

The major theorem about number fields is the Primitive Element Theorem:

Theorem 1.2.2. Let K be a number field of degree n. Then there exists a θ ∈ K such that

K = Q(θ). (1.4)

Such a θ is called a primitive element. Its minimal polynomial is an irreducible polynomial of

degree n.

Definition 1.2.3. Let K be a number field of degree n. Every polynomial T that is the minimal

polynomial of a primitive element θ ∈ K is called a defining polynomial of K. All defining

polynomials are monic, irreducible and of degree n. They satisfy

K ' Q[X]/〈T 〉 ,

that is the quotient ring of Q[X] modulo the ideal generated by the polynomial T .

Definition 1.2.4. All elements x in a number field K are algebraic numbers: there exists a

polynomial P in Q[X] such that P (x) = 0, and P not identically zero. Among these elements,

algebraic integers are the ones for which the polynomial P can be chosen monic and in Z[X].

The set of all algebraic integers in K is a ring, called the ring of integers and denoted by OK.

For our purposes, we only allow θ to be an algebraic integer in the notation of Equa-

tion (1.4). Hence, by defining polynomial, we refer to monic, irreducible, degree-n polynomials

in Z[X].

1.2.2 Complex embeddings

The definition of number fields implies that they all may be embedded in C. More precisely,

we have the following result:

Proposition 1.2.5. Let K be a number field of degree n and let θ be a primitive element. There

exist exactly n field embeddings of K in C, given by θ 7→ θi , where the θi are the roots in C of the

minimal polynomial of θ. These embeddings are Q-linear, their images Ki ⊂ C are called the

conjugate fields of K and all the Ki are isomorphic to K.

Definition 1.2.6. The signature of a number field K is the pair (r1,r2) where r1 is the number of

embeddings of K whose image lies in R and 2r2 is the number of non-real complex embeddings,

so that r1+2r2 = n. Note that the non-real embeddings always come in pairs since if σi is such

an embedding, so is σi .

32

1.2. Number fields & Polynomials

We almost always order them in the following way: σ1, . . . ,σr1 for the real embeddings and

σr1+r2+i =σr1+i for 1 ≤ i ≤ r2. Finally, we get an embedding σ, called the canonical embedding,

σ : K −→ Rr1 ×Cr2 .

For practical purpose, it is often considered as an r1 +2r2 = n-tuple of real numbers.

Remark 1.2.7. When we want to work with a real lattice in Rn , it suffices to differentiate the

real and imaginary parts of the complex embeddings. However, we often add a factor
p

2 for

these coordinates. Thus, as

|σi (x)|2 +|σi (x)|2 =
(p

2ℜ(σi (x))
)2 +

(p
2ℑ(σi (x))

)2
,

the L2-norm is preserved through this operation from Cr2 to R2r2 . This map is often called the

Minkowski map.

There exist efficient methods for determining the signature of a number field. It can e.g.

be achieved using a result of Sturm by applying Euclid’s algorithm to T and T ′ for a defining

polynomial T (see [Coh93, Algorithm 4.1.11]). As we are more interested in the roots than in

the signature itself, a simpler idea is to get an approximation of the roots and to count the

number of real roots. However, Sturm’s method makes it possible to compute the number of

real roots without any approximation.

Example 1.2.8. The signature of a quadratic field is either (2,0) in which case we speak of real

quadratic fields, or (0,1) in which case we speak of imaginary quadratic fields.

1.2.3 Representations of algebraic numbers

Now we have defined algebraic numbers and integers, we need to study the way for represent-

ing them. There exist different possibilities and we briefly describe the one that we are going

to use.

Using their minimal polynomial. We begin by the tool we have already seen: the minimal

polynomial. Obviously, every algebraic number x possesses a unique minimal polynomial T .

This one is shared by all its conjugates, the n complex roots of T . We then need additional

information to determine which of these roots is supposed to be represented. This can be

accomplished using the numerical value of x as an element of C, or at least an approximation;

it suffices for this approximation to be closer to x than to any of its conjugates.

33

Chapter 1. Algebraic Number Theory Tools

Using the vector-space structure. As K is a Q-vector space, there exists a Q-basis of K. Let

us denote by (θ1, . . . ,θn) such a basis. Then, every element can be written in the following way:

x = 1

d

n−1∑
i=0

xiθi ,

with d ∈ N∗, xi ∈ Z and gcd(x0, . . . , xn−1,d) = 1. In the case where θi = θi−1 for some primitive

element θ, it is called the standard representation and it is the one we use most of the time.

This choice also allows to perform efficiently operations between algebraic numbers.

Using matrices. Let (θ1, . . . ,θn) be a Q-basis of K. For every algebraic number x, the multi-

plication by x is an endomorphism of the vector space K. Therefore x can be represented by

the n ×n matrix Mx of this endomorphism in that basis. Its coefficients are rationals but as in

the previous case, we can identify a denominator and an integral matrix where all the integers

involved are coprime. This choice induces longer runtime than standard representation for

additions for instance, but is more suited for division.

Using the conjugates. Another method for representing an algebraic number is to use nu-

merical approximations of its conjugates. Let σi denote the n distinct embeddings of K in C.

If x =
n−1∑
i=0

xiθ
i , with the xi ∈ Z, then

σ j (x) =
n−1∑
i=0

xiσ j (θ)i ,

and the σ j (x) are the conjugates of x, but in the specific order (the one chosen for ordering

the embeddings). Hence every element can be represented by the (r1 + r2)-tuple

σ(x) = (
σ1(x), . . . ,σr1+r2 (x)

)
.

For practical purpose, σ(x) is often considered as an r1 +2r2 = n-tuple of real numbers.

In this representation, all operations are easy to perform, because they are done compo-

nentwise. However, we can work only with approximations and take care of round-off errors.

To go back to an exact representation, Cohen explains a method in [Coh93, Section 4.2.4] that

recovers the integers xi from a good enough approximation.

1.2.4 Integral bases

Among all the Q-basis of K, some have additional properties. More precisely, we know that OK

is a free Z-module of rank n — which is only an abelian group with a basis — and for any

34

1.2. Number fields & Polynomials

primitive element θ in K, we have Z[θ] ⊂OK. However, this inclusion can be strict.

Definition 1.2.9. A Z-basis of the free module OK is called an integral basis of K.

Integral bases play an important role because in number fields, we are most often con-

cerned by algebraic integers rather than algebraic numbers. Therefore, we are always trying

to work with such a basis. There exist practical algorithms for computing an integral basis. It

is completely out of our topic as we always consider that we have such a basis as inputs. We

only give a sketchy idea of the way to do it, details are available in [Coh93, Section 6.1]. The

method consists in enlarging the module Z[θ] prime by prime until we have reached the full

ring of integers OK — for θ a primitive element. More details are given in Remark 1.2.14.

1.2.5 Discriminants

In the context of number fields, two important notions of discriminant appear. The discrimi-

nant of the defining polynomial T denoted by∆(T) and the discriminant of the number field K

denoted by ∆K. These values are related but different in general.

Definition 1.2.10. Given any integral basisω1, . . . ,ωn ofOK, the discriminant of K is the square

of the determinant of the n×n matrix B whose entries are Bi , j =σi (ω j), where theσi are the n

complex embeddings. This can be written as

∆K = det
(
σi (ω j)

)2 .

Note that this value is independent of the choice of the integral basis and corresponds to the

determinant of the canonical embedding of OK.

Special case of dimension 2. For quadratic fields, the discriminant carries all the informa-

tion. To distinguish quadratic fields from higher-degree number fields, we use D to denote the

discriminant of quadratic fields.

Definition 1.2.11. An integer D is called a fundamental discriminant if one of the following

statements holds:

• D ≡ 1 mod 4 and D is square-free,

• D = 4m, where m ≡ 2,3 mod 4 and m is square-free.

Proposition 1.2.12. Let D be a fundamental discriminant. Then D is the discriminant of the

quadratic field K = Q(
p

D) and an integral basis of K is given by
(
1, D+pD

2

)
.

35

Chapter 1. Algebraic Number Theory Tools

For the purpose of simplification, we fix our monic irreducible degree-n polynomial T as

T (X) =
n∑

k=0
tk X k = tn

n∏
j=1

(X −τ j) with tn = 1. (1.5)

Definition 1.2.13. The discriminant of T is defined as

∆(T) = (−1)
n(n−1)

2
1

tn
Res(T,T ′),

where Res(T,T ′) is the resultant of T and its derivative. Note that, despite the fact that we only

consider monic polynomials T , we give here the general formula that includes the leading

term tn .

The link with the discriminant of the field K comes from the fact that the discriminant of a

monic polynomial T corresponds to the discriminant of the suborder2 of OK defined by T ,

i.e., Z[θ] where θ is a root of T . This implies

∆(T) =C 2∆K,

where C ∈ N \{0} is the index of the suborder C = [
OK : Z[θ]

]
.

Remark 1.2.14. This index C plays a key role in the construction of the integral basis. Indeed,

when we enlarge Z[θ] primes by primes to reach OK, the involved primes are factors of C .

Therefore, given ∆(T), the candidates are the primes whose square divide it. Hence, the costly

part of the algorithm is the factorization of the discriminant of the input polynomial.

Our first result is a way to bound the discriminant of a number field by something de-

pending on the size of the coefficients of a defining polynomial. To do that, we introduce two

quantities, defined from the polynomial.

Definition 1.2.15. For a polynomial T as in Equation (1.5), we define

• the height of T as H(T) = max
k

|tk |,

• the Mahler measure of T as

M(T) = |tn |
n∏

j=1
max

(
1, |τ j |

)
.

The Mahler measure was introduced by Mahler in [Mah60], but before him, something

similar appeared in the work of Lehmer [Leh33]. He defined it as log M(T) = ∫ 1
0 log |T (e2iπt)|dt,

2Here, the fact that T is monic is essential. Otherwise, Z[θ] would not be a suborder of OK.

36

1.2. Number fields & Polynomials

but we prefer to work with this alternative form, directly obtained thanks to Jensen’s formula.

Again, despite considering monic polynomials, we include tn for the sake of generality.

The link between the Mahler measure and the height of a polynomial is quite tight and

can be illustrated by the two following inequalities. First, Mahler shows in [Mah60] that for all

k ∈ {0, . . . ,n}, we have |tk | ≤
(n

k

)
M(T) thus

H(T) ≤
(

n

bn
2 c

)
·M(T) ≤ 2n ·M(T) (1.6)

In addition, it is proven in [MG94] that

M(T) ≤
(

n∑
i=0

|ti |2
) 1

2

which implies M(T) ≤p
n +1 H(T). (1.7)

We desire to find an inequality between ∆K and H (T) for a defining polynomial T of K. We

begin by looking for a relation between the discriminant ∆(T) and the height H(T). The resul-

tant of T and T ′ can be computed as the determinant of the (2n−1)× (2n−1) Sylvester matrix

whose entries are all bounded by nH(T) in absolute value. It then follows from Hadamard’s

inequality

|∆K| ≤ |∆(T)| ≤
(
n
p

2n −1 H(T)
)2n−1

. (1.8)

Using the Mahler measure, it is possible to refine the bound on |∆(T)| we have derived

from Hadamard’s inequality (see [Mah64, Theorem 1]) and to obtain

|∆(T)| ≤ nn M(T)2n−2. (1.9)

Proposition 1.2.16. Let T be a monic irreducible polynomial of degree n ≥ 2. Then T defines a

number field K whose discriminant ∆K satisfies

|∆K| ≤ |∆(T)| ≤ n2n H(T)2n−2.

Proof. It is an almost direct consequence of combining (1.7) and (1.9) which yields the im-

proved bound for the discriminant. It only remains to check the simple fact that

∀n ∈ N∗, (n +1)n−1 ≤ nn .

37

Chapter 1. Algebraic Number Theory Tools

1.3 Orders & Ideals

Before introducing the class group, the central point of this thesis, we need to define the main

building blocks of it, ideals.

Definition 1.3.1. An order O in K is a subring of K which, as a Z-module, is finitely generated

and of maximal rank n = degK.

By definition, all orders O are subrings of OK. The ring of integers OK is then the maximal

order of K and this terminology explains the notation. Henceforth we use both ring of integers

or maximal order for OK. The majority of the content of this thesis may be applied in a

suborder of OK. However, because it is always nicer to be in OK, we are only concerned by this

choice.

Example 1.3.2. In a quadratic field Q(
p

D), all the orders are uniquely determined by their

discriminant D f 2, for an integer f ≥ 1, called the conductor.

Definition 1.3.3.

• An ideal a of OK is a sub-OK-module of OK, i.e., a sub-Z-module of OK such that for

every x ∈OK and a ∈a we have xa ∈a.

• A fractional ideal a in OK is a non-zero submodule of K such that there exists a non-zero

integer d with da ideal of OK. To make a clear distinction between ideals and fractional

ideals, we occasionally refer to the former as integral ideals.

• An ideal (fractional or not) is said to be a principal ideal if there exists x ∈ K such that

a= xOK. For sake of simplicity, when the order OK is fixed, such an ideal generated by

x ∈ K is denoted by 〈x〉.

We define the product of two ideals as

ab=
{

k∑
i=1

ai bi | k ∈ N, ai ∈a,bi ∈b
}

.

Because we work in the maximal order OK, every fractional ideal a is invertible and

a−1 = {x ∈ K | xa⊂OK} .

Proposition 1.3.4. Let I(K) be the set of fractional ideals of OK. Then I(K) is an abelian group.

As in the case of Z, there exist prime elements in OK.

38

1.3. Orders & Ideals

Definition 1.3.5. An ideal p of OK is called a prime ideal if p 6=OK and if the quotient ring

OK/p is an integral domain.

Example 1.3.6. In Z, the prime ideals are exactly the pZ for p prime and {0}.

The existence of these prime ideals allows us to define a prime decomposition property as

the one that holds in Z:

Proposition 1.3.7. Every fractional ideal a can be written in a unique way as

a=∏
p
pυp(a),

the product being over a finite set of prime ideals and the exponents υp(a), called the p-adic

valuation, being in Z. In particular, a is an integral ideal if and only if all the valuations υp(a)

are non-negative.

We now provide a small dictionary that shows that number fields are only a generaliza-

tion of what happens in Q. These result may be easily derived from the p-adic valuation

expressions.

fractional ideal ←→ rational number

integral ideal ←→ integer

inclusion ←→ divisibility (reverse order)

sum ←→ greatest common divisor

intersection ←→ lowest common multiple

product ←→ product

We define ideal divisibility as for integers in order to introduce prime decomposition, even

though it exactly corresponds to inclusion. In dimension 2, we have a little more structure on

the ideals thanks to quadratic forms. This is develop in Section 2.1.1.

Coefficient embedding and ideal lattices. We have seen with the ring of integers that there

exists a canonical embedding σ : OK → Rr1 ×Cr2 . It also applies to every ideal of OK. In

addition, there exists another embedding ς, called the coefficient embedding. Let ω1, . . . ,ωn

be a fixed integral basis of OK and let a be an ideal of OK. Then, for every x ∈ a, we have

x = ∑
xiωi so that we define ς(x) = (x1, . . . , xn) ∈ Zn . As every ideal a ⊂OK is generated as a

Z-module by n elements, we obtain an n ×n matrix by considering the coefficient embedding

of each element of the generating family. This matrix defines a lattice, called the ideal lattice

associated to a.

39

Chapter 1. Algebraic Number Theory Tools

Example 1.3.8. For OK viewed as an ideal, we obtain the trivial lattice. Therefore we only talk

about coefficient embedding for ideals, while the canonical embedding over OK brings the

definition of the discriminant.

Remark 1.3.9. The canonical embedding of an ideal a can be directly derived from the product

between its coefficient embedding and the canonical embedding of the ring of integers OK.

Representations of ideals. From the coefficient embedding defined above, we may derive

easily one of the ways to represent ideals. More precisely, we require an additional formatting

because we consider the HNF of the ideal lattices. With this representation, it is possible to

compute the sums and products between ideals, looking respectively at the HNF of n ×2n or

n ×n2 matrices. Note that such a representation depends on the choice made for the integral

basis.

Using the stronger OK-module structure allows us to infer another way to carry the infor-

mation.

Proposition 1.3.10. Let a be an integral ideal of OK. There exists a non-zero element in a∩Z.

Denoting by `(a) the smallest positive element of a∩Z, there exists an element β such that

a= `(a)OK +βOK.

Here, we represent an ideal by giving two generators. It is called a two element representa-

tion and is denoted by
〈
`(a),β

〉
. We force here the first element to be as simple as possible but

for every non-zero α ∈ a, there exists a β ∈ a such that a= 〈
α,β

〉
. Although this representa-

tion requires much less storage, it is not convenient for classical operations, except for two

particular cases: in quadratic fields (n = 2) or for prime ideals.

Prime ideals. This is a brief overview of the results we need about prime ideals. Let K be a

number field of degree n.

Proposition 1.3.11. If p is a prime ideal of K, then p∩Z = pZ for some prime number p. We

say that p is a prime ideal above p and that p is below p.

Theorem 1.3.12. Let p be a prime number. There exist positive integers ei such that

pOK =
g∏

i=1
pei

i ,

where the pi are all the prime ideals above p.

40

1.4. Norms & Smoothness

The integer ei is called the ramification index of p at pi . The degree of the field extension

fi =
[
OK/pi : Z/pZ

]
is called the residual degree — or simply the degree — of pi .

Proposition 1.3.13. With the notation as above, we have the following equality

g∑
i=1

ei fi = n.

Combining these specific results with the Proposition 1.3.10, we can obtain a more precise

representation for prime ideals:

Theorem 1.3.14. Let K be a number field, T a defining polynomial and θ a primitive element

associated to T . Then for any prime p not dividing the index f = [
OK : Z[θ]

]
, we obtain a prime

decomposition for pOK as follows. Let

T =
g∏

i=1
T ei

i mod p

be the decomposition of T into monic irreducible factors over Fp . Then we have

pOK =
g∏

i=1
pei

i ,

where pi =
〈

p,Ti (θ)
〉= pOK +Ti (θ)OK.

Furthermore, the residual degree fi of pi is equal to the degree of Ti .

We have a similar result for the cases where p divides f but it requires more material —

the same as for integral bases (see [Coh93, Section 6.2]). However, practically, the index is very

small — often it is equal to 1 — and divisible by only a very tiny set of primes, so Theorem 1.3.14

is an important result for the representation of prime ideals.

1.4 Norms & Smoothness

1.4.1 Norms in K

Let x be an algebraic number. Its norm is by definition the product of its conjugates. If

T =
m∑

i=0
ti X i is the minimal polynomial of x, for a divisor m of n, then we have

N (x) = (−1)m t0

tm
. (1.10)

Usually, we consider the norms with respect to a fixed number field. If K = Q(x) the definition of

the norm suits Equation (1.10) but if Q(x) K care must be taken for keeping N multiplicative.

41

Chapter 1. Algebraic Number Theory Tools

Proposition 1.4.1. Let K be a number field of degree n and σi the n distinct embeddings of K

in C. If x ∈ K has degree m, we have

NK/Q(x) = ∏
1≤i≤n

σi (x) =N (x)n/m

and for any x and y in K,

NK/Q(x) ·NK/Q(y) =NK/Q(x · y).

We easily derive a first relation between the norm of an algebraic integer and the norm of

its canonical embedding, based on the inequality of arithmetic and geometric means.

Lemma 1.4.2. For every algebraic integer x ∈OK, we have

NK/Q(x) ≤
(‖σ(x)‖p

n

)n

.

This definition of the norm is very convenient for algebraic numbers represented as the

vector of their conjugates. We also give expressions of the norm suitable for other representa-

tions.

Proposition 1.4.3.

• For an algebraic number given by its standard representation x = 1
d

n−1∑
i=0

xiθ
i , where θ is a

primitive element, the norm of x satisfies

NK/Q(x) = d−n Res(T,Px) , (1.11)

where Res(T,Px) denotes the resultant of Px =
n−1∑
i=0

xi X i and T , the defining polynomial

associated to θ.

• For an algebraic number x represented by the multiplication-by-x matrix Mx , the norm

is given by

N (x) =±det Mx .

The bounds for the resultants displayed in [BL10, Theorem 7] allow us to provide another

bound on the field norm of an element given in standard representation:

Lemma 1.4.4. For an algebraic integer x = Px (θ) for Px ∈ Z[X] and θ a root of the defining

polynomial T of K, we know that

|NK/Q(x)| ≤ (n +1)m/2(m +1)n/2H(Px)n H(T)m ,

where n = degT = degK and m = degPx = deg x.

42

1.4. Norms & Smoothness

1.4.2 Ideal norms

One can generalize the notion of norm of an element in the number field to the norm of an

integral ideal.

Proposition 1.4.5. Let a be a non-zero ideal of OK. The quotient OK
/
a is a finite ring and its

cardinality is called the norm of a and denoted N (a).

Because we work in the maximal order OK, all ideals are invertible so that the ideal norm

is multiplicative, but this is not true in all orders.

Proposition 1.4.6. For a and b two ideals of OK, we have

N (a ·b) =N (a) ·N (b).

Moreover this norm is closely linked to the norm of integers in the sense that for every

x ∈OK,

N
(〈x〉)= ∣∣NK/Q(x)

∣∣ . (1.12)

Note that one can dispense with the absolute value in the later equality by using Archimedian

valuations — also called infinite places — but it is not necessary for our purposes.

As a result, we can directly relate the norm of the embedding to the field norm using

Lemma 1.4.4:

Corollary 1.4.7. For any x ∈OK, using the coefficient embedding ς, we have the inequality∣∣NK/Q(x)
∣∣1/n ≤ (n +1) ·H(T) · ‖ς(x)‖,

Another important result for ideal norms is the following one concerning prime ideals.

Proposition 1.4.8. Let p be a prime ideal of OK above p whose residual degree is f . The norm

of p satisfies

N (p) = p f .

The norm of an ideal a can be used to give an upper bound on the norm of the smallest

non-zero element it contains. There always exists a non-zero x ∈a for which

∣∣NK/Q(x)
∣∣≤ (

2

π

)r2 √
|∆K|N (a),

where ∆K is the discriminant of K and r2 is the number of pairs of complex embeddings,

defined as previously.

Moreover, ideal norm acts as a proportionality coefficient between the norm of an ideal

and the determinant of its embedding.

43

Chapter 1. Algebraic Number Theory Tools

Lemma 1.4.9. For any integral ideal a of K, σ(a) is a lattice of Rn and

detσ(a) =
√

|∆K|N (a).

1.4.3 Smooth integers

The most common notion of size of an integer n is its binary length, which is the quantity

dlog2 ne. There are however other useful measures, and one of particular interest in the present

context is the sizes of the primes dividing n compared to n.

Definition 1.4.10. For an integer B ∈ N, we say that an integer is B-smooth if all its prime

factors are below B . The bound B is then often called a smoothness bound.

Before the results about smoothness probability, we give an estimation of the size of the

primes involved in the prime decomposition of an integer.

Proposition 1.4.11. Let n be an integer and pr ≤ ·· · ≤ p1 primes such that n = ∏
1≤i≤r

pi . We

have an estimation of the asymptotic average relative size of the largest primes involved in the

decomposition:

logn p1 = 0.6243299885 (1.13)

logn p2 = 0.2095808743 (1.14)

logn p3 = 0.0883160989. (1.15)

Proof. This result is provided in [KP76, Section 9]. These values are derived from the prob-

ability that the factor pk of n ∈ {1, · · · , N } satisfies pk < nx , for x in [0,1], when N tends to

infinity.

Smoothness probability. Let us denote by P(x, y) the probability that an integer x is y-

smooth, that means all prime factors of x are less than or equal to y . Dickman was the first

one to address the question of asymptotic formulae in [Dic30]. Before stating his result, we

introduce the Dickman rho-function, defined over R+ as the unique continuous function that

satisfies uρ′(u)+ρ(u −1) = 0 with initial condition ρ(u) = 1 for u ∈ [0,1].

Proposition 1.4.12. For any fixed u > 0, we have

lim
x→∞P

(
x, x1/u)= ρ(u).

Proof. This result appears in the work of Dickman [Dic30] and in the survey written later by

Hildebrand and Tenenbaum [HT93]. The latter also showed [HT93, Corollary 1.3] that when u

is large enough, ρ(u) may be approximated by u−u(1+o(1)).

44

1.4. Norms & Smoothness

The main drawback of that previous result is that u has to be fixed: it cannot depend on x.

This issue is covered by the stronger result of Canfield, Erdős, and Pomerance in [CEP83]:

Theorem 1.4.13. For every ε> 0, there exists a constant Cε such that for all x ≥ 1 and u satisfying

3 ≤ u ≤ (1−ε) log x
loglog x , we have

P(x, x1/u) ≥ e
−u

(
logu+loglogu−1+ loglogu−1

logu +E(x,u)
)
,

where

|E(x,u)| ≤Cε

(
loglogu

logu

)2

.

Eventually, we can express P(x, y) by fixing u such that u = log x
log y and substitute in the last

expression. We obtain

P(x, y) = u−u(1+o(1)),

which we already have from Dickman’s work.

Subexponential L-notation. The term subexponential has been introduced for describing

algorithms whose complexity is larger than polynomial but smaller than exponential. More

precisely, the amount of time required for completing such an algorithm for an n-bit input

is about 2O(nα), for 0 <α< 1. Thus, we introduce the handy L-notation used for expressing

subexponential complexities.

Definition 1.4.14. Given two constants α and c with α ∈ [0,1] and c > 0, LN (α,c) is used as a

shorthand for

e(c+o(1))(log N)α(loglog N)1−α
,

where o(1) tends to 0 as N tends to infinity. We sometimes encounter the notation LN (α) when

specifying c is superfluous, that is considering quantities in LN (α,O(1)).

We also introduce

ŁN (α,c) = ec(log N)α(loglog N)1−α
,

without the o(1) for considering constants — for algorithm inputs for instance.

Remark 1.4.15. The reason of the factor in loglog N is complexity calculation. Indeed, this is

exactly what we want for describing the complexity of an algorithm based on index calculus

method (see Section 2.3).

Before translating the Canfield-Erdős-Pomerance theorem in terms of L-notation, we give

easy calculation rules for this notation.

45

Chapter 1. Algebraic Number Theory Tools

Proposition 1.4.16. Let α1,α2 ∈ [0,1] and c1,c2 > 0. Then we have

LLN (α2,c2)(α1,c1) = LN

(
α1α2,c1cα1

2 α
1−α1
2

)
(1.16)

LN (α1,c1) ·LN (α2,c2) =
{

LN (α1,c1) if α1 >α2

LN (α1,c1 + c2) if α1 =α2
(1.17)

Corollary 1.4.17. Assuming that x = ŁN (α1,c1), y = ŁN (α2,c2), and α1 >α2, Theorem 1.4.13

can be expressed as

P(x, y) = LN

(
α1 −α2, (α1 −α2)

c1

c2

)−1

.

Smoothness tests. Now we have estimated the ratio of smooth numbers below N to N ,

it remains to give a way to recognize them. We need to introduce smoothness tests. The

first idea one may have is considering the complete factorization. Once we know the prime

decomposition of an integer, it is easy to recognize if the number is smooth with respect

to some smoothness bound. The best algorithm for factoring an integer N is currently the

Number Field Sieve (NFS) and has runtime in LN

(
1
3 , 3

√
64
9

)
— see [LLMP90] for more details.

However it seems reasonable that, given a smoothness bound B , to test if an integer is

B-smooth or not has a complexity that essentially depends on B , and not so much on the input

integer. Such an algorithm exists and is derived from the Elliptic Curve Method, introduced by

Lenstra in [Len87] for factoring integers. It provides a Monte-Carlo algorithm whose heuristic

complexity is given in the following proposition.

Proposition 1.4.18. For a given smoothness bound B and an integer N , ECM finds the B-

smooth part of N in time (
log N

)2 ·LB

(
1

2
,
p

2

)
,

where the factor
(
log N

)2 comes from the multiplication of two N -bits integers.

1.4.4 Smooth ideals

For our purposes, we need to extend these results on smoothness to ideals.

Definition 1.4.19. For an integer B ∈ N, we say that an ideal a is B-smooth if all its prime

factors have a norm below B .

Scourfield essentially shows in [Sco04] that the results of Dickman can be generalized to

number fields. However, as in the case of integers, this does not suffice and we need a stronger

assumption, which we formulate in the following way.

46

1.4. Norms & Smoothness

Heuristic 1.4.20. The probability P(x, y) that an ideal of norm bounded by x is y-smooth

satisfies

P(x, y) ≥ e−u(logu)(1+o(1)) for u = log x

log y
.

We stress that this is the exact correspondence of what have been proven for integers. This

heuristic already appears in the work of Biasse and Fieker [BF14, Heuristic 1] about class group

computation. Obviously, we also want to make use of the L-notation in context of number

fields. We have to choose a quantity that represents the size of the number fields in order

to express various quantities (probabilities, complexities, etc.) related to them. The natural

choice is the absolute discriminant of the number field |∆K|. The previous heuristic then

admits a neat rewriting in terms of the handy L-notation:

Corollary 1.4.21. Assuming that x = Ł|∆K|(α1,c1), y = Ł|∆K|(α2,c2), andα1 >α2, Heuristic 1.4.20

can be expressed as

P(x, y) = L|∆K|
(
α1 −α2, (α1 −α2)

c1

c2

)−1

.

Note that Seysen [Sey87] has proven in 1985 a similar result for quadratic number fields.

For arbitrary degree, it remains conjectural, even under GRH.

Smoothness tests. Testing smoothness for ideals is not very complicated, assuming that

we know how to test smoothness for integers. Indeed, given B ∈ N, if a is B-smooth, then in

particular its norm N (a) is B-smooth. Therefore, testing smoothness for ideals essentially

amounts to testing smoothness for ideal norms. Computing the norm of an ideal is easy (see

Section 1.4.2) and has a polynomial runtime in both the extension degree and the size of

the norm. Once we know the prime numbers appearing in the norm, it suffices to find the

valuations at the prime ideals above them. A way to figure out these valuations is explained

in [Coh93, Section 4.8.3]. The algorithm described also has a complexity that is polynomial in

the extension degree and the size of the prime number p.

Finally, the runtime of ideal smoothness tests is the same as integer smoothness tests:

Poly
(
n, logN (a)

) ·LB

(
1

2
,
p

2

)
,

where n is the extension degree of the field and N (a) the norm of the ideal we want to test.

47

Chapter 1. Algebraic Number Theory Tools

1.5 Ideal classes & Units

1.5.1 The Class Group

We now have all we require for giving the definition of the class group. It is defined as a set of

equivalence classes:

Definition 1.5.1. Let K be a number field and OK its ring of integers. We say that two frac-

tional ideals a and b in K are equivalent if there exists x ∈ K∗ such that b= 〈x〉a. The set of

equivalence classes is called the class group of OK — or K — and is denoted by Cl (OK).

As the set of fractional ideals is a group, Cl (OK) also is a group.

Theorem 1.5.2. For any number field K, the class group Cl (OK) is a finite abelian group, whose

cardinality, called the class number, is denoted by hK.

We give the exact sequence that involves the class group

1 −→ P(K) −→ I(K) −→ Cl (OK) −→ 1,

where I(K) denotes the set of ideals and P(K) the subset formed by the principal ones.

Remark 1.5.3. We can also define a class group for non-maximal orders in number fields.

However, this complicates the definition because we have to limit to invertible ideals.

Computing the structure of the class group of a number field, and even only its class

number, are major tasks in algorithmic number theory. This is the main problem I address

during my PhD and this is the main topic of this thesis. A history of this domain is recalled in

the following chapter.

1.5.2 The Group of Units

Class group computation is closely related to units in the number field. Thus we give basic

results about units and briefly explain why we need them. By definition, a unit in K is an

algebraic integer such that its inverse is also an algebraic integer. Equivalently, it is an algebraic

integer of norm equal to ±1.

Definition 1.5.4. The set of units in K is a multiplicative group, denoted by U (K). The torsion

subgroup, formed of the so-called roots of unity, is denoted µ(K).

Again, we have an exact sequence

1 −→ U (K) −→ K∗ −→ P(K) −→ 1.

48

1.5. Ideal classes & Units

The main result about units in number fields is the Dirichlet’s Unit Theorem:

Theorem 1.5.5. Let (r1,r2) be the signature of K. The group U (K) is a finitely generated abelian

group of rank r = r1 + r2 −1. We have a group isomorphism

U (K) 'µ(K)×Zr ,

and µ(K) is a finite cyclic group.

From this theorem, we derive the existence of units u1, . . . ,ur such that every unit can

be written in a unique way as ζun1
1 · · ·unr

r with ni ∈ Z and ζ a root of unity. We call such

a family (ui) a set of fundamental units. Though this set is not unique, they all share the

same kind of “determinant” because we go from one to another by multiplying by an r × r

unimodular matrix. An issue arises when we tackle this kind of “determinant” as we are in the

presence of a multiplicative group. That is why we introduce the Log-unit lattice.

Definition 1.5.6. The logarithmic embedding of K∗ in Rr1+r2 is the map Log that sends x to

Log(x) = (
log |σ1(x)|, . . . , log |σr1 (x)|,2 log |σr1+1(x)|, . . . ,2 log |σr1+r2 (x)|) .

From this embedding, we directly derive the following statement.

Theorem 1.5.7. The image of the group U (K) under the logarithmic embedding is a lattice of

rank r = r1 + r2 −1 in the hyperplane
∑

1≤i≤r1+r2

xi = 0 of Rr1+r2 . It is called the Log-unit lattice.

In addition, the kernel of this embedding is exactly equal to the group µ(K) of the roots of unity.

Thanks to this logarithmic embedding, we have linearized our problem and we can now

give the definition of this kind of “determinant”.

Definition 1.5.8. The determinant of the Log-unit lattice is called the regulator of K and is

denoted by RegK. It can also be viewed as the absolute value of the determinant of any of

the r × r matrices extracted from the r × (r +1) matrix

(
log

∥∥σ j (ui)
∥∥

C

)
1≤i≤r

1≤ j≤r+1

for any set of fundamental units u1, . . . ,ur . We use ‖x‖C to denote the absolute value of x if x is

real and its square if x is complex (for the factor 2 appearing in the definition of the logarithmic

embedding).

To be more precise, it is the calculation of — a close approximation of — the regulator that

is linked with class group computation. On the other hand, computing the torsion subgroup

49

Chapter 1. Algebraic Number Theory Tools

of U (K) is not that difficult. First, if r1 > 0, the only roots of unity are ±1. If r1 = 0, it suffices to

look for small vectors in the image through the canonical embedding of OK. Cohen provides

two algorithms for doing this in [Coh93, Section 4.9.2].

The Class Number Formula. Now we have defined all the notions, we sketch the link be-

tween class group and regulator.

Definition 1.5.9. Let K be a number field. We define for s with ℜ(s) > 1 the Dedekind zeta

function ζK of K by the formulae

ζK(s) =∑
a

1

N (a)s =∏
p

1

1− 1
N (p)s

,

where the sum is over all non-zero integral ideals of OK and the product is over all non-zero

prime ideals of OK.

Proposition 1.5.10. Let K be a number field of degree n = r1 +2r2. Let wK denote the number

of roots of unity. Then the function ζK(s) converges absolutely for s with ℜ(s) > 1 and extends

to a meromorphic function defined for all complex s with only one simple pole at s = 1, whose

residue satisfies

lim
s→1

(s −1)ζK(s) = 2r1 · (2π)r2 ·hK ·RegK

wK ·p|∆K|
. (1.18)

When we look carefully at this equality, we notice that on the right-hand side, all the

factors can be easily computed, except for the product hKRegK. Then, once we know an

approximation of the left-hand side, it is easy to derive an estimation of this product. And

this is the reason why class number and regulator are computed together. As explained in the

remainder of this thesis, making use of this formula does not only allow to derive one from

another, but this part is also mandatory for ensuring that we have correctly computed these

values.

Another consequence of the Class Number Formula is the Prime Ideal Theorem stated by

Landau in [Lan03]. It is the generalization of the Prime Number Theorem to number fields and

provides an asymptotic formula for counting the number of prime ideals of bounded norm.

Theorem 1.5.11. In every number field K, the number of prime ideals of norm bounded by

N ∈ N, denoted by πK(N), satisfies

πK(N) ∼ N

log N
.

50

Chapter 2

Previous work on class group

computations and related problems

Contents

2.1 Exponential strategies for quadratic number fields 54

2.1.1 Gauss and the equivalence classes of binary quadratic forms 54

2.1.2 Using analytic formulae . 57

2.1.3 Shanks’ Baby-Step–Giant-Step method 58

2.2 Class group generation . 60

2.3 Subexponential complexity, using index calculus method 61

2.3.1 First example: imaginary quadratic number fields, by Hafner and Mc-

Curley . 64

2.3.2 Buchmann extension to all number fields 66

2.3.3 Release the degree, by Biasse and Fieker 68

2.4 Algorithms related to number fields . 69

2.4.1 Reduction of defining polynomials, by Cohen and Diaz y Diaz 69

2.4.2 The Number Field Sieve . 71

53

Chapter 2. Previous work on class group computations and related problems

After the mathematical reminder in Chapter 1, we review the state of the art on class group

computations together with related problems in number fields. Obviously, the first results

obtained were for quadratic number fields.

2.1 Exponential strategies for quadratic number fields

Oddly, the very first result comes from Gauss, long before the birth of ideals.

2.1.1 Gauss and the equivalence classes of binary quadratic forms

Gauss was the first to compute the class number of quadratic number fields. However, that is

not how he approached the problem: he was interested in binary quadratic forms.

We make use of the Proposition 1.2.12 for the representation of quadratics number fields

as K = Q(
p

D), where D is the fundamental discriminant of the quadratic field.

Definition 2.1.1 ([Coh93, Definition 5.2.3]). A binary quadratic form f is a function f (x, y) =
ax2+bx y +c y2 where a, b and c are integers, which is denoted more briefly by (a,b,c). We say

that f is primitive if gcd(a,b,c) = 1. If f and g are two quadratic forms, we say that f and g are

equivalent if there exists a matrix M = (
mi , j

) ∈ SL2(Z) — i.e., an integral matrix of determinant

equal to 1 — such that g (x, y) = f (m1,1x +m1,2 y,m2,1x +m2,2 y).

This definition implies that being equivalent is an equivalence relation which preserves

the discriminant D = b2 − 4ac of the quadratic form. In addition, if D is a fundamental

discriminant, then any quadratic form of discriminant D = b2 −4ac is primitive.

Before explaining how Gauss worked with these equivalence classes, we emphasize the

link between ideals — and so class groups — in quadratic number fields and binary quadratic

forms. Let D be a fundamental discriminant and let QFD denote the set of equivalence classes

of binary quadratic forms of discriminant equal to D , that is

QFD = {
(a,b,c) | b2 −4ac = D

}/
SL2(Z)

.

We then define the two functions

QFD ←→ Cl
(
OQ(

p
D)

)

(a,b,c)
φF I7−→

[
aZ+ −b+pD

2 Z
]

N (xω1−yω2)
N (I)

φI F←−[
[I]

for I =ω1Z+ω2Z

54

2.1. Exponential strategies for quadratic number fields

The first function φF I is well-defined, because it only depends on the orbit under SL2(Z).

However, it has a kernel, because the two forms (a,b,c) and (−a,b,−c) define the same ideal

class. Hence, the second function φI F cannot be well-defined: we have to fix an orientation

for the basis (ω1,ω2), for instance we assume that ω2σ(ω1)−ω1σ(ω2)p
D

> 0.

Theorem 2.1.2. With the notation previously used,

• If D < 0, we have a bijection between the class group Cl
(
OQ(

p
D)

)
and the set

{
(a,b,c) | b2 −4ac = D and a > 0

}/
SL2(Z)

.

• If D > 0, we have a bijection between QFD and Cl
(
OQ(

p
D)

)+
, where this time we take the

quotient only by principal ideals generated by an element of positive norm. This set is

called the narrow class group.

Since we have the exact sequence

1 −→ {±1} −→ Cl (OK)+ −→ Cl (OK) −→ 1,

we conclude that in the real quadratic case D > 0, the class number hK is twice the number of

orbits under SL2(Z).

Now we have understood how we may derive the class number of a quadratic number

field from the number of equivalence classes of binary quadratic forms, we can go back to the

work of Gauss on these classes. For counting the number of equivalence classes, he focused

on one representative for each one, namely the reduced form. Because variations appear

between imaginary and real quadratic number fields, we split the study and begin examining

the imaginary case.

Imaginary quadratic number fields. First assume that D is a fundamental discriminant

satisfying D < 0.

Definition 2.1.3. A positive definite quadratic form (a,b,c) is said to be reduced if |b| ≤ a ≤ c

and if, in addition, one of the two inequalities is an equality — i.e., either |b| = a or a = c —

then b ≥ 0.

Proposition 2.1.4. In every class of positive definite quadratic forms of discriminant D < 0,

there exists exactly one reduced form. Furthermore, if (a,b,c) is reduced, then a ≤
p|D|

3 .

Thanks to this result, it suffices to count the reduced forms of discriminant D such that

|b| ≤ a ≤
p|D|

3 to obtain the class number of the quadratic field Q
(p

D
)
. The algorithm is

presented as Algorithm 1.

55

Chapter 2. Previous work on class group computations and related problems

Algorithm 1 Counting reduced forms.

Input: A negative fundamental discriminant D < 0.
Output: The class number of binary quadratic forms of discriminant D .

1: Set h = 0, b ≡ D mod 2 and B = b
p|D|

3 c
2: while b ≤ B do
3: Set q = b2−D

4 and a = b
4: if a < 1 then
5: Set a = 1
6: end if
7: while a2 ≤ q do
8: if a | q then
9: if a = b or a2 = q or b = 0 then

10: Set h = h +1
11: else
12: Set h = h +2
13: end if
14: end if
15: Set a = a +1
16: end while
17: Set b = b +2
18: end while
19: return h

This algorithm indeed counts the number of reduced forms of discriminant D . Its runtime

is in O (|D|), as it consists in two nested loops with O
(p|D|) terms.

Real quadratic number fields. Now assuming that D > 0, we have a similar process for real

quadratic number fields.

Definition 2.1.5. Let f = (a,b,c) be a quadratic form with positive discriminant D. We say

that f is reduced if we have ∣∣∣pD −2|a|
∣∣∣< b <

p
D .

However, it is a little bit more complicated than in the imaginary case, because this time,

every class contains a cycle of reduced forms. Then the class number of quadratic forms is

exactly the number of such cycles. Here, cycle relates to the operation ρ defined as

ρ
(
(a,b,c)

)= (
c,r,

r 2 −D

4c

)
,

where r is the unique integer such that r ≡ b mod 2a and that satisfies −|a| < r ≤ |a| if |a| >p
D

and
p

D −2|a| < r <p
D otherwise.

56

2.1. Exponential strategies for quadratic number fields

Hence, there exists an algorithm for deriving the class number in the real case, as for the

imaginary case, that runs in time O (|D|) again. However, due to the difficulty of the process,

we do not present this algorithm here.

2.1.2 Using analytic formulae

Another way to obtain the class number of quadratic — and even more general — number

fields is to look at the Class Number Formula (Equation (1.18)). In case of quadratic fields, there

exists an alternative form using L-functions, also introduced by Dirichlet1. For a fundamental

discriminant D , they are defined as

LD (s) = ∑
n≥1

(
D

n

)
1

ns ,

and this series converges for ℜ(s) > 1. In addition, we have

ζQ
(p

D
)(s) = ζ(s)LD (s). (2.1)

The more essential point for using the Class Number Formula is that when D < 0, the

group of units has rank 0, and so the regulator is 1. Eventually, this allows to recover directly

the class number hQ
(p

D
). However, the convergence of the L-function is not that fast and we

require a large number of terms for having a good approximation.

Theorem 2.1.6 ([Coh93, Corollary 5.3.16]). Let D <−4 be a fundamental discriminant. Then

hQ
(p

D
) is the closest integer to the sum

N∑
n=1

(
D

n

)(
erfc

(
n

√
π

|D|
)
+
p|D|
πn

e−πn2/|D|
)

,

where erfc(x) = 2p
π

∫ ∞
x e−t 2

dt and N =
⌊√

|D| log |D|
2π

⌋
.

Finally, we obtain a method for obtaining the class number of an imaginary quadratic

number field that runs in time O
(|D|1/2+ε) for any ε > 0. In the real case, i.e., D > 0, there

exists a similar result that allows to compute the class number in time O
(
D1/2+ε) for any ε> 0,

assuming we know the regulator of the field. Indeed, this time, the group of units has rank 1

and the regulator is the logarithm of the unique generator greater than 1 of the torsion-free

part of the unit group.

1These L-functions are different from the L subexponential notation introduced in Chapter 1.

57

Chapter 2. Previous work on class group computations and related problems

Computing the regulator. We see that in order to obtain the class number, we have to find

the regulator. Because we study the case of real quadratic number fields, the rank of the

group of units is 1 and there is only one generator greater than 1. We denote it by u. We know

that there exists a tuple (a,b) ∈ Z2 such that u = a+b
p

D
2 . Because N (u) = 1, we conclude that

a2−Db2 =±4. We then obtain a Diophantine equation close to a Pell equation. More precisely,

if D ≡ 0 mod 4, then it becomes equivalent to a′2 − D
4 b2 =±1. A good way to find a solution

over Z is to use the ordinary continued fraction expansion of
p

D . That provides the solution

within a number of steps in O
(
D1/2+ε) for any ε> 0. However, the size of a and b can be very

large — such as e
p

D for instance — so that the full execution time is only bounded by O
(
D1+ε).

This is not sufficient.

Keeping in mind that we are not really interested in the fundamental unit, but mostly in

the regulator, we can modify the continued fraction algorithm for working with real numbers

with a reasonable degree of accuracy. If the intermediate results are all computed to a given

precision, we finally obtain an approximation of the regulator at this precision, with a runtime

in O
(
D1/2+ε). This ends the proof that analytic methods can be used to compute the class

number of any quadratic number field in time O
(|D|1/2+ε) for any ε> 0.

2.1.3 Shanks’ Baby-Step–Giant-Step method

The problem of computing class groups was addressed for the first time by Shanks in 1969. By

computing class groups, we mean that we are interested in the group structure, and not only

in its cardinality. Indeed, until now, all the described methods only provide the class number,

but nothing about the structure.

In [Sha69], Shanks introduces a new method for deriving the class group structure of an

imaginary quadratic number field in time O
(|D|1/4+ε) for any ε> 0. This is the first occurrence

in the literature of the now widespread Baby-Step–Giant-Step method, that has applications

in various areas of number theory. His work brought two refinements, because it enables to

obtain more information on the class group, and in less time.

The primary description is again for imaginary quadratic number fields. Let D < 0 be a fun-

damental discriminant. From the Class Number Formula (Equation (1.18)), we obtain a good

enough approximation h̃ of the class number hK by computing a partial sum of the Dirichlet

function associated to D . Shanks claimed that 217 terms generally suffice for having a relative

error below 10−3. For every small prime p such that the Legendre symbol satisfies
(

D
p

)
= 1,

we set bp as a square root of D mod p that has the same parity with D, i.e., D ≡ bp mod 2.

Denoting by cp the integer such that b2
p −D = 4pcp , we thus obtain a quadratic form

fp = (
p,bp ,cp

)
(2.2)

58

2.1. Exponential strategies for quadratic number fields

of discriminant D , and we eventually have such a form for each small prime with
(

D
p

)
= 1.

Then his idea is to compute powers of a fixed quadratic form. Indeed, every form f satisfies

f hK = ι, where ι denotes the principal form, defined according to the parity of D as

ι=
(
1,1,

1−D

4

)
or ι=

(
1,0,

−D

4

)
.

We begin by computing f h̃ , with h̃ as above. This is performed using fast exponentiation

together with compositions and reductions of quadratic forms. Then, we almost certainly

have f h̃ 6= ι so most likely we require a correction term C such that hK = h̃ +C . This value C

may be assumed to be small compared to hK (say, on the order of hK
1000), so it can be found

efficiently using the Baby-Step–Giant-Step method. For an integer s to be determined, we

compute and store the coefficients an , bn of the first s powers of f :

f n = (an ,bn ,cn) for n ∈ {1, . . . , s}.

For free, we obtain an , bn for n ∈ {0,−1, . . . ,−s} because f −n = (an ,−bn ,cn). Hence if we have

|hK − h̃| ≤ s, we find a match

f h̃ = (ah̃ ,bh̃ ,ch̃) = (an ,bn ,cn) = f n ,

for some n ∈ {−s, . . . , s}. We only take care of the first two coefficients because as the discrimi-

nant is fixed, the third one is completely determined by the two others. If |hK − h̃| > s, we set

g = 2s and compute successively the power f h̃+r g for r = 1,−1,2,−2, . . . until for an r to be

determined, we get a match

f h̃+r g = f n .

In the end, we have computed s baby-steps and 2|r | giant-steps until we have found an equality

f h̃+r g−n = ι. The best parameters choice is s = 2|r | and r × s ≈C , that is r and s of order
p

C .

As the class number satisfies hK =O
(|D|1/2+ε), we get r and s about O

(|D|1/4+ε), so that the

full number of compositions we have to perform is also bounded by O
(|D|1/4+ε), for any ε> 0.

In addition, we can recover the order of the quadratic forms and then infer the group

structure. An issue arises when the order e of f is small, because it implies that other multiples

of e are close to h̃. However, this can be fixed simply by looking at another form.

Despite the breakthrough provided by this new method, the result suffers from shortcom-

ings in the complexity study. However, Lenstra [Len82] and Schoof [Sch82] independently

proved in 1982 that the runtime of the algorithm can be reduced to O
(|D|1/5+ε) for any ε> 0,

assuming the Generalized Riemann Hypothesis.

59

Chapter 2. Previous work on class group computations and related problems

Conjecture (Generalized Riemann Hypothesis (GRH)). For every fundamental discriminant D,

the L-function LD (s) = ∑
n≥1

(D
n

) 1
ns can be extended by analytic continuation to a meromorphic

function defined on the whole complex plane. The Generalized Riemann Hypothesis asserts

that all the zeros of LD in the critical strip 0 ≤ℜ(s) ≤ 1 lie on the critical line ℜ(s) = 1
2 .

Remark 2.1.7. To be accurate, GRH is defined for all Dirichlet characters χ and associated

L-functions L(χ, s) = ∑
n≥1

χ(s)
ns . However, as we are only interested in the Kronecker symbol

(D
n

)
this statement suffices for our purposes.

At first, Lenstra and Schoof showed that computing the approximation h̃ with O
(|D|1/5+ε)

terms suffices to bound the relative error by

|hK − h̃| ≤ B with B =O
(|D|1/5+ε) .

This is a consequence of results from Lagarias, Odlyzko, and Oesterlé [LO77, Oes79] that

requires the assumption of GRH. Hence, all the calculations performed have a runtime in

O
(|D|1/5+ε), for any ε > 0. In addition, still assuming GRH, Lagarias, Odlyzko, and Mont-

gomery [LOM79] obtained a generating set of forms for the class group.

Lemma 2.1.8. Assuming GRH, the class group of quadratic binary forms is generated by all the

forms fp for p primes such that p ≤ c0
(
log |D|)2, for an effectively computable constant c0.

This lemma bounds the number of forms we have to use during the computations and

ensures that the global complexity is O
(|D|1/5+ε).

For the real case, Shanks introduced a similar method, using the infrastucture, that is a

group-like structure appearing in real quadratic number fields (see [Fon09] for more details

about infrastructure). Shanks claimed a runtime in O
(|D|1/4+ε) as for the imaginary case, and

Lenstra and Schoof also proved that it is in fact O
(|D|1/5+ε), assuming GRH.

2.2 Class group generation

Before continuing, we need results about the generation of the class group for all number

fields. The first result we want to cite is from Minkowski. He shows [PZ89, Corollary 2.9] that

every class contains an ideal of norm not exceeding Minkowski’s bound

MK =
(

4

π

)r2 n!

nn

√
|∆K|. (2.3)

This is a direct consequence of the following theorem, also due to Minkowski.

60

2.3. Subexponential complexity, using index calculus method

Theorem 2.2.1. For every lattice L ⊂ Rn and any convex set in Rn which is symmetric with

respect to the origin and with volume greater than 2n ·detL, there exists a non-zero lattice point

that belongs to the convex set.

Unfortunately, this is not sufficient because an algorithm that uses MK cannot have a subex-

ponential complexity. This was the reason of the work of Lenstra [Len82] and Schoof [Sch82]

for quadratic fields. Later, Bach [Bac90] extended this result to all number fields, under the

assumption of ERH.

Conjecture (Extended Riemann Hypothesis (ERH)). The Extended Riemann Hypothesis as-

serts that, for any Dedekind zeta-function ζK(s), all the zeros of ζK in the critical strip 0 ≤ℜ(s) ≤ 1

lie on the critical line ℜ(s) = 1
2 .

Remark 2.2.2. In case of quadratic number fields, ERH and GRH are equivalent because of the

equality of Equation (2.1). However, we introduce here ERH for the generalization to arbitrary

degree number fields.

Theorem 2.2.3 ([Bac90, Theorem 4.4]). Assuming ERH, the class group of a number field K of

discriminant∆K is generated by the prime ideals of norm at most 12
(
log |∆K|

)2. In the quadratic

case, this bound can be reduced to 6
(
log |∆K|

)2.

Note that this bound is not easily comparable with Minkowski’s. One bound asserts the

existence of a representative of the class with bounded norm whereas the other bound gives a

bound for constructing a large enough set of generators. Belabas et al. [BDF08] also work on

this generation bound and find some practical improvements.

Approximation of the residue. All these results also have consequences for the computation

of — an approximation of — the Euler Product.

Buchmann and Williams [BW89] first understood that using averaging procedures permits

to be more precise than truncated products. However, we had to wait for the extensive study

of Bach [Bac95], who states that, assuming ERH, a good enough approximation h̃ of hKRegK

such that hKRegK ≤ h̃ ≤ 2hKRegK can be computed in polynomial time in the discriminant of

the field considering only the primes below O
(
log2 |∆K|

)
.

2.3 Subexponential complexity, using index calculus method

The current best algorithms for class group computation rely on the index calculus method. It

is also the case for factoring integers or computing discrete logarithms in finite fields. A brief

summary is as follows:

61

Chapter 2. Previous work on class group computations and related problems

1. Fix a factor base composed of small elements and that is large enough to generate all

elements of the group.

2. Collect relations between those small elements, corresponding to linear equations.

3. Deduce the result sought performing linear algebra on the system built from the rela-

tions.

We give more details about the different steps in case of class group computation. After-

wards, every contribution is examined with respect to this global strategy.

The factor base. We define the factor base B as the set of all prime ideals in OK that have a

norm bounded by a constant B . This bound must be chosen such that the factor base generates

the whole class group. As recalled in Section 2.2, Bach has shown that assuming ERH, the

classes of ideals with a representative of norm less than 12
(
log |∆K|

)2 suffice to generate the

class group. However, as the ability to find relations in the collection step increases with the

size of the factor base, we fix

B = Ł|∆K|(β,cb),

for values of β and cb with 0 <β< 1 and cb > 0 that are determined later.

Thanks to the Landau Prime Ideal Theorem (see Theorem 1.5.11), we know that in every

number field K, the number of prime ideals of norm bounded by B , denoted by πK(B), satisfies

πK(B) ∼ B

logB
. (2.4)

As a consequence, the cardinality of the factor base is about B , namely:

N = |B| = L|∆K|(β,cb).

Relation collection. Let pi , 1 ≤ i ≤ N , denote the N prime ideals in the factor base B. As

their classes generate Cl (OK), we have a surjective morphism φ : Zn −→ Cl (OK) via

ZN −→ I −→ Cl (OK)

(e1, · · · ,eN) 7−→ ∏
i p

ei

i 7−→ ∏
i [pi]ei ,

(2.5)

and the class group Cl (OK) is then isomorphic to ZN /kerφ. By computing the kernel of this

morphism, we deduce the class group, which is given by the lattice of the vectors (e1, · · · ,eN)

in ZN for which
∏
pei

i = 〈x〉 with x ∈ K∗. Thus the relations that we want to collect are given

by x in K∗ such that

〈x〉 =∏
pei

i . (2.6)

62

2.3. Subexponential complexity, using index calculus method

Relation collection is the main part of the algorithm, so that it is the one that has been

significantly improved with the new contributions.

Linear algebra. Once the relations are collected, we store them in a matrix. A row corre-

sponds to an algebraic number x and the i -th coefficient is the valuation of the principal

ideal 〈x〉 at pi — that is ei in Equation (2.6). These valuations ei are computed by looking

first at the norm of 〈x〉, as explained in Section 1.4.4. Then, the structure of the class group is

given by the Smith Normal Form (SNF) of the matrix (see Section 1.1.1). More precisely, we

first compute the Hermite Normal Form (HNF) with a pre-multiplier since we need kernel

vectors in the verification step (as explained below). Finally, the class number can be deduced

by multiplying the diagonal coefficients of the HNF while the group structure is given by the

diagonal coefficients of the SNF.

Verification. The group H provided by the linear algebra step is only a candidate for the

class group and has to be verified. Indeed, even assuming that the factor base is large enough

to generate the full class group, the number of relations derived may be insufficient. In that

case, the class group Cl (OK) is only a quotient of the candidate H . Fortunately we can obtain

some information on the class number from the Class Number Formula (Proposition 1.5.10).

As mentioned in Section 2.2, a good approximation of the Euler Product can be calculated in

order to get an estimation of the product hKRegK.

Thus we need at least an approximation of the regulator of the number field in order to

carry out this verification. Fortunately, it does not cost too much to determine a candidate for

the regulator once we have our candidate for the class group. Indeed, the collected relations

make it possible to infer one: by looking for elements in the kernel of the relation matrix, we

are computing units of K. Then once we have found generators of the group spanned by these

units, it only remains to compute a determinant. If these generators form a set of fundamental

units, we get the regulator. Otherwise, we have only found a multiple of the regulator, because

the group spanned by those is a subgroup of the unit group U (K).

In the end, when we have the — hypothetical — class number and regulator, it is enough

to compare their product with the approximation calculated from the Euler Product. Either

the ratio is close to 1 in which case the two quantities are the correct ones, or it is not and more

relations are required. This verification step works since both class number and regulator

are computed decreasingly: if there is a sufficient number of primes ideals — respectively

units — involved, then adding a relation can only reduce the class number — respectively the

regulator — by an integer factor. As a consequence, the ratio is close to 1 only for hK and RegK.

63

Chapter 2. Previous work on class group computations and related problems

2.3.1 First example: imaginary quadratic number fields, by Hafner and McCurley

Again, the initial subexponential result was obtained for imaginary quadratic number fields,

by Hafner and McCurley. As the prior results, they did not use ideals, but binary quadratic

forms. We recall that in those fields, the regulator is 1, because the rank of the unit group is

zero. Note that the results of Bach stated in Section 2.2 were not released at that time. However,

this is not a problem because for quadratic number fields, the analysis was done by Lenstra

and Schoof.

The factor base B is fixed as the set of the forms fp = (p,bp ,cp) — as defined in Equa-

tion (2.2) — for all primes p ≤ B = Ł|D|
(

1
2 ,

p
2

4

)
such that

(
D
p

)
= −1. Thanks to Lemma 2.1.8,

we know that this set of forms is large enough to generate the whole class group. In fact, it

is much larger than required to generate the class group: as we want to decompose forms

over this set efficiently, we need such a size. The construction of the factor base is naive: it

relies on an enumeration of all the primes below the bound. It follows from the Chebotarev’s

density theorem [Che26] combined with Theorem 1.5.11 that the number of such primes can

be expected to be B
2logB = L|D|

(
1
2 ,

p
2

4

)
. At the same time, we can use the enumeration of primes

to find an approximation of hK. Using the techniques of Schoof [Sch82], we know that there

exists a constant c1 such that computing the partial sum of the L-function up to c1
(
log |D|)2

suffices to find an approximation h̃ such that

3

4
<

22
7 hK

bpDch̃
< 3

2
, (2.7)

where 22
7 is an approximation of π. Then, we easily derive a rational b that satisfies b ≤ hK ≤ 2b,

which suffices for our purposes. The details are given in [McC89]. Both of the described parts

of the algorithm run in time O(|B|) = L|D|
(

1
2 ,

p
2

4

)
.

Hafner and McCurley used that the class group can be described as the quotient of ZN

by a lattice — or a Z-module — of relations as described in Equation (2.5). In their article,

ideal products are replaced by quadratic-form compositions, but the structures are the same,

as recalled in Theorem 2.1.2. The main part of the algorithm consists in the derivation of

relations between elements of the factor base.

The generation of the relations is based on the work of Seysen described for integer

factorization [Sey87]. For every form fp in the factor base B, we reduce the form2

f 2N |D|
p

N∏
i=1

f xi
pi

,

2The reason for the exponent 2N |D| comes later in the section.

64

2.3. Subexponential complexity, using index calculus method

where the exponents xi are chosen randomly from a uniform distribution on
{
0, . . . , |D|} for

the forms fpi with pi ≤ c0
(
log |D|)2 and xi = 0 otherwise. Let (a,b,c) denote the reduced form

in the class. If a is Ł|D|
(

1
2 ,

p
2

4

)
-smooth, then (a,b,c) splits completely over the factor base B

and we obtain a relation

f 2N |D|
p

N∏
i=1

f xi
pi

= (a,b,c) =
N∏

j=1
f

y j
p j

.

If the smoothness test fails, we modify the randomization product
∏

f xi
pi

and reduce the new

form we get. This step is repeated until N = |B| relations have been collected, involving all N

quadratic forms in the factor base.

For testing the smoothness of the reduced form, Hafner and McCurley choose to use trial

divisions, which runs in time O(N) — instead of using methods described in Section 1.4.4.

The complexity of the relation collection also depends on the number of forms we have to test

for smoothness. The estimate below was first presented by Seysen in the context of integer

factorization.

Theorem 2.3.1 ([Sey87, Proposition 4.4]). Assuming ERH, the number of reduced forms (a,b,c)

such that a is B-smooth for B = Ł|D|
(

1
2 ,

p
2

4

)
is at least L|D|

(
1
2 ,

p
2

2

)−1
.

Hence, to obtain one relation, we need to test about L|D|
(

1
2 ,

p
2

2

)
forms; that leads to a total

number of L|D|
(

1
2 ,

p
2

4 +
p

2
2

)
forms to find N relations. As each form requires at most N trial

divisions, the final complexity of the collection step is

L|D|
(

1

2
,
p

2

)
.

At this point, we have a square matrix that is sparse and diagonally dominated — because of

the exponents 2N |D|. We compute its determinant modulo p for small values of primes p using

Gaussian elimination and recover the determinant using the Chinese Remainder Theorem and

the fact that it is upper bounded by N
5N
2 |D|N — this last bound is derived from Hadamard’s

inequality and bounds on the exponents of our construction. The diagonally-dominated

property implies that this matrix has rank N , so it corresponds to a sublattice of the lattice of

relations. However, the relations we have used have a special form. Therefore it is unlikely that

this sublattice is the whole lattice of relations.

Then, we need new relations, corresponding to elements chosen almost uniformly at

random. So we look at forms
∏

f xi
pi

for random xi ∈ {−|D|2, . . . , |D|2}, reduce them, and test

their smoothness as we have previously done. It is claimed in [HM89] that N more relations

of this form suffice to generate the whole lattice of relations with probability 1− 1
|D| . The

determinant of the N × N matrix we have computed allows us to use modular arithmetic.

65

Chapter 2. Previous work on class group computations and related problems

Again, the runtime for this relation collection is in

L|D|
(

1

2
,
p

2

)
.

Finally, we know that we have the whole lattice of relations — with probability 1− 1
|D| —

and it only remains to find the invariants of the class group. We begin by computing the

Hermite Normal Form (HNF) of the N ×2N matrix built from the relations. This part is well

explained in [HM89]. As the results of Storjohann recalled in Section 1.1.1 were not known

at that time, they make use of the extended Euclidean algorithm to obtain a lower triangular

matrix using unimodular column operations. All the calculations are performed modulo the

determinant of the initial N ×N matrix. Then the HNF is derived using similar techniques.

The algorithms they use for linear algebra require to have a matrix diagonally dominated, that

is why our matrix has this shape — for more details, see [HM89]. At this point, we know the

class number hK: it is the product of the diagonal coefficients of the HNF. We can verify that it

satisfies the inequality of Equation (2.7).

The structure is eventually provided by the Smith Normal Form of the HNF. Again, we make

use of gcd calculations and unimodular column operations, this time performed modulo hK.

All the linear algebra tools we use — determinant, HNF and SNF computations — run in time

N 4+o(1) = L|D|
(1

2 ,
p

2
)

(see [HM89] for a justification for the exponent), so that it provides the

final complexity of the complete algorithm. Note that the relation collection and the linear

algebra steps present exactly the same complexity. That is no coincidence. Indeed, this is

due to our choice for the size of the factor base — the second constant in the L|D|
(1

2

)
— since

the best complexity is obtained when there is a balance between the complexities of these

two steps.

2.3.2 Buchmann extension to all number fields

In [Buc90], Buchmann extends the idea of Hafner and McCurley for arbitrary-degree number

fields. No more binary quadratic forms are involved in the description, only ideals.

The way to derive the relations is similar to the collection performed for quadratic number

fields, except that we do not require a diagonally-dominated matrix. Indeed, we build random

ideals as power-products of elements of the factor base: A =∏
pvi

i . Then we find a reduced

ideal A′ in the class of A. This reduction hinges on finding a shortest non-zero vector in A

which runs in polynomial time (see Section 1.1.3) — it is exponential in the degree but the

66

2.3. Subexponential complexity, using index calculus method

degree is fixed. Eventually if A′ splits over the factor base B, we have A′ =∏
p

v ′
i

i so that

A · (A′)−1 =
N∏

i=1
p

vi−v ′
i

i

is principal, because A and A′ are in the same class. This equality leads to a relation since we

have found the vector (v1 − v ′
1, · · · , vN − v ′

N), which belongs to the kernel.

Fixing the smoothness bound B = Ł|∆K|
(1

2 ,cb
)
, and so the size of the factor base N , we need

an estimate of the probability that a reduced ideal splits over the factor base. Buchmann then

made the following assumption:

Heuristic 2.3.2. The probability that a reduced ideal is Ł|∆K|
(1

2 ,cb
)
-smooth is L|∆K|

(
1
2 , 1

4cb

)−1
.

This is true for quadratic fields: Seysen proved it in the imaginary case and it was easily

extended to the real case. This is also a consequence of Heuristic 1.4.20 and Corollary 1.4.21.

Indeed, reduced ideals have norm bounded by L|∆K|
(
1, 1

2

)
and the expression of the second

constant leads to 1
4cb

.

We also require a bound for the number of relations we need. The strategy followed by

Buchmann assumes that:

Heuristic 2.3.3. L|∆K|
(1

2 ,cb
)

relations suffice to find a generating system of the lattice of rela-

tions.

The complexity of the collection phase is identical as the quadratic case: for getting

L|∆K|
(1

2 ,cb
)

relations, Heuristic 2.3.2 reveals that testing L|∆K|
(

1
2 ,cb + 1

4cb

)
ideals is necessary.

As every test requires L|∆K|
(1

2 ,cb
)

operations — still using trial divisions — we obtain a final

complexity in

L|∆K|
(

1

2
,2cb +

1

4cb

)
.

Note that the extension degree of the field has to be fixed, as solving the SVP is polynomial

in the size of the entries but exponential in the dimension. That is why we only can obtain a

subexponential complexity for a fixed degree.

In addition, as we have already explained, it is appropriate to calculate the regulator

simultaneously. Hence, we rather consider a lattice of dimension N + r , where N is the

cardinality of the factor base and r = r1 + r2 −1 the rank of the unit group. Naturally, the r last

coordinates are given by the logarithms of the complex embeddings of the principal-ideal

generator, which corresponds to the shortest vector identified in the reduction phase. Finally,

this construction implies that the determinant of the whole lattice of relations is hKRegK.

The linear algebra step is also more complicated. If we can figure out the HNF and SNF

of the integer part of the relation matrix in time O(N 4), it seems that the computation of the

67

Chapter 2. Previous work on class group computations and related problems

regulator require O(N 9) operations — because of precision issues. Then, the global complexity

is obtained when the equality 2cb + 1
4cb

= 9cb holds, that is for cb =
p

7
14 ≈ 0.189. This means

that the expected runtime of the whole algorithm is L|∆K|
(1

2 ,1.7
)
.

We remark that at this point, we have not verified if the result is correct. To do that,

we require more information about the product hKRegK. All the previous approximations

obtained thanks to the Class Number Formula are derived from Dirichlet L-functions, that are

equivalent to zeta-functions for quadratic number fields. Using the results of Bach recalled in

Section 2.2 — even though they came later — we get a way to ensure that the computed result

is correct.

2.3.3 Release the degree, by Biasse and Fieker

In [BF14], Biasse and Fieker modify the reduction algorithm: they use BKZ-reductions, offering

a trade-off between the time spent in the reduction and the approximation factor of the short

vectors. Thus they reach a complexity which allows both the degree and the discriminant of

the field to tend to infinity. In addition, they replace trial divisions by more efficient methods

such as ECM for the smoothness tests (see Section 1.4.4). That allows to reduce the complexity

of the relation collection by a factor of order N .

For the linear algebra phase, they provide a deep study on the precision in [BF14, Section 4].

Based on the HNF computation recalled in Theorem 1.1.3, they show that assuming we have a

full-rank matrix of relations, we can derive the class group structure and an approximation of

the regulator — and so verify our results — in time O(Nω+1) where N is the size of the factor

base. Precision questions are handled using a p-adic approach, whereas another method

using rational approximations is developed in [Bia14a]. Finally, they also give a way to provide

a set of fundamental units, in compact representation.

We make use of their analysis on precision in the sequel. We do not give a detailed

description of the relation collection here as we recall and improve it in Chapter 4. Biasse and

Fieker achieved a L|∆K|
(2

3 +ε
)

complexity in the general case and L|∆K|
(1

2

)
when the extension

degree n satisfies the inequality n ≤ (log |∆K|)3/4−ε.

We leave aside for the moment their q-descent strategy, recalled in Chapter 3. It consists

in an improvement that allows to reduce the complexity to L|∆K|(a) with 1
3 ≤ a ≤ 1

2 when the

number field is defined by a polynomial having small height [BF14, Theorem 6.2].

68

2.4. Algorithms related to number fields

2.4 Algorithms related to number fields

2.4.1 Reduction of defining polynomials, by Cohen and Diaz y Diaz

We have already mentioned in Section 1.2.1 that the number of defining polynomials for a

given number field is infinite. For simplicity, it seems that the best choice is the polynomial

having the smallest coefficients — i.e., smallest height — since the degree is fixed. In addition,

it allows more efficient computations in the number field. A particularly relevant fact is that

when bounding the norm of algebraic integers in OK, the height of the defining polynomial of

the field appears in the bound (see Lemma 1.4.4 and Corollary 1.4.7).

Cohen and Diaz y Diaz in [CD91] present an algorithm for reducing defining polynomials,

also mentioned in [Poh93, Chapter V]. In the sequel, we refer to it as the algorithm of Cohen

and Diaz y Diaz.

They define the size of a monic degree-n polynomial T =
n∏

j=1
(X −τ j) as

S(T) =
n∑

j=1
|τ j |2

and it is the quantity they choose to minimize. Since for all k ∈ {0, . . . ,n}, the (n − k)-th

coefficient satisfies

|tn−k | ≤
(

n

k

)(
S(T)

n

) k
2

,

the size of T is related to the size of max |tn−k |
2
k and hence to the height of the polynomial.

The main reason for this choice is that the size is not too hard to minimize. Indeed,

computing a polynomial with the smallest size is equivalent to finding T such that the vector

formed of its roots has the smallest L2-norm. Remembering that this vector belongs to the

lattice formed of the canonical embedding σ(OK) in Rr1 ×Cr2 ' Rn , this can be done using a

lattice reduction algorithm. In particular, the LLL algorithm is a good option since it finds a

basis of short vectors. However, while it solves the problem for small values of n, when the

dimension grows, it is not guaranteed to find the shortest vector. If needed, it is possible to

use stronger lattice reduction algorithms such as BKZ for instance.

Thus, the first step of method of Cohen and Diaz y Diaz is to compute an integral basis

ω1, . . . ,ωn of OK, so that every algebraic integer x ∈OK can be expressed as

x =
n∑

i=1
xiωi ,

where the xi are in Z. Assuming that x generates K, then its minimal polynomial coincides

69

Chapter 2. Previous work on class group computations and related problems

with its characteristic polynomial

Px =
n∏

j=1

(
X −

n∑
i=1

xiσ j (ωi)

)
.

This turns the correspondence between algebraic integers of degree n and monic poly-

nomials defining the field K into a correspondence between polynomials and vectors in the

lattice of embeddings of OK in Cn . This lattice is generated by the n vectors:

Ωi = [σ1(ωi), . . . ,σn(ωi)] . (2.8)

When the field K is not primitive, care should be taken to avoid polynomials that generate

a strict subfield3 of K. For an integer x, the size of its polynomial Px is given by a positive

definite quadratic form in the xi :

S(Px) =
n∑

j=1

∣∣∣∣∣ n∑
i=1

xiσ j (ωi)

∣∣∣∣∣
2

=∑
i , j

(
n∑

k=1
σk (ωi)σk (ω j)

)
xi x j .

Equivalently, one can remark that the coefficients
n∑

k=1
σk (ωi)σk (ω j) are the entries of the

Gram matrix of the above lattice. Since lattice reduction, including the LLL algorithm, only

requires this Gram matrix as input (see the work of Espitau and Joux in [EJ17]), one can find a

basis of short vectors in Zn corresponding to small values of S(Px). Finally, the algorithm of

Cohen and Diaz y Diaz selects the best value for x it can find, breaking ties in any arbitrary

manner when several values are equally good.

From an implementation perspective, the lattice generated by vectors Ωi (and/or the

Gram matrix of the lattice) cannot be represented exactly. Instead, it is explained in [Coh93]

that, in general, it should be replaced by an approximation with sufficiently high precision.

In fact, there is an interesting special case that occurs when K is totally real. In that case, the

Gram matrix is integral and the lattice reduction can thus be performed on the exact lattice,

represented by its Gram matrix. For the general case, an analysis of the necessary precision is

given in [Bel04] and practical results are provided in [EJ17].

To summarize, the existing algorithm reduces the above lattice in order to find a primitive

integer of K with smallest size. However, as already noticed by Cohen in [Coh93, Remark Algo-

rithm 4.4.12], having the smallest size does not necessarily imply having the smallest height.

3This issue is taken care of in practice in PARI/GP by restricting the enumeration in order to avoid elements
that only generate subfields — they have a minimal polynomial whose degree is strictly lower than n. In theory,
since they can be an extremely large number of short bad elements, bounding the resulting complexity is difficult.

70

2.4. Algorithms related to number fields

2.4.2 The Number Field Sieve

To finish, we also decide to briefly introduce the Number Field Sieve (NFS), the most efficient

algorithm for integer factorization, as it uses methods that are close to the ones we use in class

group computations. It also has applications in discrete logarithm computation in finite fields.

The main part consists in the search for algebraic integers of smooth norms in number fields.

This is a direct generalization of the quadratic sieve, where we extend the degree of the number

field involved.

More precisely, for factoring an integer N , we introduce two irreducible polynomials

f , g ∈ Z[X] of small degrees, that have a common root m when interpreted as polynomials

modulo N . Selecting these polynomials can be done in many ways, and finding the best one

is still a open problem. An easy choice is to fix the degree d together with the root m, and

then fix f as f (X) =
d∑

i=0
bi X i where the coefficients bi are chosen in {0, . . . ,m −1} such that

N =∑
bi mi and g (X) = X −m. Thus f represents the expansion of N in base m. The next part

involves a search of smooth values for bdeg(f) f (a
b) and bdeg(g)g (a

b) where a and b are chosen

small in Z. The values bdeg(f) f (a
b) and bdeg(g)g (a

b) correspond to the norms of the algebraic

integers a − r f b ∈ Z[r f] and a − rg b ∈ Z[rg], where r f and rg denote roots of f and g . The way

to find such pairs (a,b) ∈ Z2 is in a certain sense similar to what we expect for class group

computation. Indeed, from such a pair (a,b) we derive a principal ideal
〈

a − r f b
〉

in Z[r f] that

splits over the set of prime ideals of small norm.

To end our explanation of the Number Field Sieve, once many pairs (a,b) are collected, we

can combine them into products of smooth norms that are squares both in Z[r f] and Z[rg].

This step relies on Gaussian elimination. Then, because both ring Z[r f] and Z[rg] inject

in Z/N Z, we obtain two squares that are equal to a −mb mod N . Eventually, we recover a

relation of the form x2 ≡ y2 mod N , from which we may get a factor of N by finding the greatest

common divisor of N and y −x.

This approach, applied in the context of class group computations, is addressed by Biasse

in [Bia14a]. Though he claims being inspired by Enge, Gaudry and Thomé [EG07, EGT11]

who reached an Lq g
(1

3

)
complexity for computing discrete logarithm in Jacobians of genus g

curves over Fq for low-degree curves, all those results are derived from the NFS. The main

difference is that unlike for NFS, we cannot choose the number field we work with. Biasse

describes in [Bia14a] an L|∆K|
(1

3

)
algorithm for class group computation in very restrictive

classes of number fields. We describe and extend his work in Chapter 5.

71

Part II

Reducing the complexity of Class

Group Computation

73

Chapter 3

Reduction of the defining polynomial

Contents

3.1 Motivations and link with class group computation 76

3.2 An optimal algorithm for NF defining polynomial reduction 79

3.3 Complexity analysis . 84

3.3.1 Number of lattices . 85

3.3.2 Cost of each enumeration . 85

3.3.3 Optimal choice for c . 87

3.4 Application to class group computation . 87

3.4.1 Experimental results . 89

75

Chapter 3. Reduction of the defining polynomial

To begin, the best complexities — below L|∆K|
(1

2

)
— are obtained for number fields defined

by a good polynomial, thanks to the q-descent algorithm of [BF14]. Thus our goal is to derive

such good defining polynomials. We introduce a new algorithm that given a number field,

outputs a defining polynomial whose height is minimal. This algorithm is exponential in

the degree, and so is only attractive when the extension degree is not too large. However,

considered as a precomputation, it allows to extend the conditional result of Biasse and Fieker

to all the fields for which there exists a good polynomial. Indeed, even if we do not know it,

thanks to our algorithm, we can now find it.

3.1 Motivations and link with class group computation

As we have illustrated with Lemma 1.4.4 and Corollary 1.4.7, it is mostly better to work in a

number field that is defined by a good polynomial. As the degree is fixed, it seems reasonable

to look for one having the smallest coefficients. In view of the results stated in [BF14], finding

such a good defining polynomial may speed up the computations performed to determine

class groups. Indeed, they propose the first algorithm with complexity below L|∆K|
(1

2

)
for class

group computation, when the number field is defined by a polynomial with small enough

coefficients. More precisely, given parameters n0,d0 > 0 and 0 <α< 1
2 , they introduced the

classes Cn0,d0,α of number fields K ' Q[X]
/〈T 〉 such that the defining polynomial T ∈ Z[X] of K

satisfies

n = degT = n0(log |∆K|)α(1+o(1)) and

d = log H(T) = d0(log |∆K|)1−α(1+o(1)). (3.1)

To be more specific, their results are slightly more general than what we state, since they

consider the computation of class groups for all orders in K. For simplicity, we only look at the

maximal order OK.

For these classes, they state the following theorem:

Theorem 3.1.1 ([BF14, Theorem 6.2]). Under ERH and smoothness heuristics, if the number

field K is in a class Cn0,d0,α, then there exists an L|∆K|(a,c) algorithm for class group and unit

group computation for some c > 0 and a such that 1−a ≥α≥ 1−2a, a ≥ 1
3 and a ≥α.

The smoothness heuristic they use for this result is essentially similar to our Heuris-

tic 1.4.20, except that they extend it to principal ideals that split over degree-1 prime ideals. In

addition they require another heuristic to bound the number of relations they have to derive.

The latter heuristic is stated later in the following section as Heuristic 4.2.2.

76

3.1. Motivations and link with class group computation

When a number field K is in Cn0,d0,α, it is defined by a polynomial T which verifies Equa-

tion (3.1), so that

log H(T) = d0n0(1+o(1))

n
log |∆K|, i.e., H(T) = |∆K|

κ
n (3.2)

where κ= n0d0(1+o(1)) tends to a constant.

We know from Proposition 1.2.16 that the height of T satisfies H(T) ≥ n
n

n−1 |∆K|
1

2(n−1) . This

means that the best — i.e., the smallest — value for κ we can hope for is κ= 1
2 +o(1). For a

randomly chosen polynomial, our experiments show that we may expect to be close to this

best case.

However, as far as we know, the best theoretical bound on the smallest-height defining

polynomials of an arbitrary number field is far from being that good. Indeed, it is a theorem

from Hunter:

Theorem 3.1.2. Let K be a number field of degree n and discriminant∆K. There exists θ ∈OK \Z

whose minimal polynomial Pθ satisfies

H(Pθ) ≤ 3n
(|∆K|

n

) n
2n−2

.

In particular, this result provides a bound for κ in the case of primitive number fields,

i.e., number fields that do not contain non-trivial subfields. In this case, every element ofOK\Z

corresponds to a generator of K whose minimal polynomial defines K.

Corollary 3.1.3. In primitive number fields, there exists a defining polynomial T whose height

satisfies

H(T) ≤ 3n
(|∆K|

n

) n
2n−2

.

Note that this bound is much worse than we would like for our application. Indeed the

bound on the height is only about the square root of the discriminant while we would like

something of the order of the n-th root of the discriminant. Alternatively, we see that it

corresponds to a value κ≈ n
2 , much larger than the best case κ≈ 1

2 .

Proof of Theorem 3.1.2. Given the integral basis ω1, . . . ,ωn of OK produced by the Round 2 al-

gorithm [Coh93, Algorithm 6.1.8], we consider the latticeL generated by (Ω1, . . . ,Ωn), whereΩi

denotes the vector σ(ωi) = [σ1(ωi), . . . ,σn(ωi)]. We know that Ω1 is the all ones vector and

that ‖Ω1‖ =
p

n. In other words, Ω1 corresponds to the integer 1 in the number field K and

generates the trivial subfield Q. Thus, elements of OK \ Z are in a one-to-one correspondence

with lattice vectors not on the line through 0 andΩ1 — i.e., with vectors that involve at least

one ofΩ2, . . . ,Ωn with a non-zero coefficient.

77

Chapter 3. Reduction of the defining polynomial

We now consider the lattice L⊥ spanned by the vectorsΩ⊥
i =Ωi −kiΩ1, where ki = <Ω1,Ωi>

n

so that <Ω1,Ω⊥
i >= 0. Hence, L⊥ is the orthogonal projection of L with respect toΩ1, and its

determinant satisfies

detL= ‖Ω1‖detL⊥.

In this new lattice L⊥, whose dimension is n −1, Minkowski’s Theorem (Theorem 2.2.1)

implies the existence of an element θ⊥ of small uniform norm, namely

∃θ⊥ ∈L⊥ such that ‖θ⊥‖∞ ≤ (
detL⊥) 1

n−1 .

Let us denote this vector by

θ⊥ =
n∑

i=2
tiΩ

⊥
i =

n∑
i=2

tiΩi −
n∑

i=2
ti kiΩ1,

with ti ∈ Z.

Consider the affine line going through
n∑

i=2
tiΩi and in the direction of Ω1. On this line,

there exists a lattice vector θ =
n∑

i=1
tiΩi of minimal length. We know that θ−θ⊥ =λΩ1 for a real

number λ with |λ| ≤ 1
2 . As a consequence, ‖θ−θ⊥‖∞ ≤ 1

2 . This allows us to conclude that

∃θ ∈L such that ‖θ‖∞ ≤
(

detLp
n

) 1
n−1 + 1

2
=

(|∆K|
n

) 1
2n−2 + 1

2
.

Finally, thanks to the Minkowski’s bound, we know that |∆K| ≥ n so that
(|∆K|

n

) 1
2n−2 ≥ 1

and
(|∆K|

n

) 1
2n−2 + 1

2 ≤ 3
2

(|∆K|
n

) 1
2n−2

. Then we deduce a — rough — upper bound for the height of

the minimal polynomial Pθ of θ, using Equation (1.6) and M(T) =∏
max(1, |τi |) ≤ (max |τi |)n :

H(Pθ) ≤ 2n

(
3

2

(|∆K|
n

) 1
2n−2

)n

= 3n
(|∆K|

n

) n
2n−2

.

For our purposes, it is difficult to directly work with the classes Cn0,d0,α. Instead, we

introduce a more convenient and more general variation, associated with the L-notation. To be

precise, we first introduce slightly modified classes C′
n0,d0,α, where we replace Equation (3.1) by

n = degT = n0

(
log |∆K|

loglog |∆K|
)α

(1+o(1)) and

d = log H(T) = d0(log |∆K|)1−α(loglog |∆K|)α (1+o(1)) .

78

3.2. An optimal algorithm for NF defining polynomial reduction

Introducing powers of loglog |∆K| in this way is more consistent with what is usually done for

discrete logarithms computations using index calculus and simplifies the asymptotic analysis

of index calculus algorithms which uses L-notation. All the theorems of [BF14] can be readily

adapted to account for this change.

This modification being done, we now generalize the definition to include more number

fields. Let n0 > 1 be a real parameter arbitrarily close to 1, d0 > 0, α ∈ [0,1] and γ ∈ [0,1] such

that α+γ ≥ 1, we define Dn0,d0,α,γ as the set of all number fields K of discriminant ∆K that

admit a monic defining polynomial T ∈ Z[X] of degree n that satisfies

1

n0

(
log |∆K|

loglog |∆K|
)α

≤ n ≤ n0

(
log |∆K|

loglog |∆K|
)α

and

d = log H(T) ≤ d0(log |∆K|)γ(loglog |∆K|)1−γ. (3.3)

For simplicity, C, C′, and D are often used for Cn0,d0,α ,C′
n0,d0,α, and Dn0,d0,α,γ. In addition to

the modification from C to C′, there are two essential differences between our classesD and the

previous classes C and C′. First, we have two different exponentsα and γ for log |∆K| in n and d ,

rather than using γ= 1−α. Second, instead of having a (1+o(1)), we introduce inequalities in

order to be more accurate. We also get the useful property that Dn0,d0,α,γ ⊂Dn′
0,d ′

0,α,γ′ whenever

n0 ≤ n′
0, d0 ≤ d ′

0 and γ≤ γ′.
Thanks to Corollary 3.1.3, we only need to consider classes Dn0,d0,α,γ, with γ at most 1.

Moreover, the defining polynomials that appear in [BF14] essentially correspond to the lower

end of the classes D, where α+γ= 1. Indeed, considering the modified classes C′, we see that

every number field K in C′
n0,d0,α also belongs to Dn0,d0,α,1−α. Thus, our broader definition of the

classes includes more number fields, and not only those whose minimal defining polynomials

satisfy α+γ= 1.

Note that, in the context of class group computations, algorithms with complexity higher

than L|∆K|
(1

2

)
are not of great interest. As a consequence, since the algorithm we propose is

exponential in n, we can limit our scope to classes with α≤ 1
2 ≤ γ.

3.2 An optimal algorithm for NF defining polynomial reduction

Now we know that existing bounds do not guarantee, for an arbitrary number field, the

existence of a defining polynomial with coefficients small enough to allow application of

Theorem 3.1.1, we thus aim at the next best thing: given an arbitrary defining polynomial for a

number field, try to find a monic polynomial of smallest height that defines the same number

field. We restrict ourselves to monic polynomials as they are minimal polynomials of algebraic

integers.

79

Chapter 3. Reduction of the defining polynomial

Throughout this section, we assume that we have as input a monic irreducible polyno-

mial Tin and a factorization of the discriminant ∆(Tin) into prime factors. This allows us to

precompute the discriminant ∆K of the number field K defined by Tin and an integral basis

ω1, . . . ,ωn of OK using the techniques described in Section 1.2.4.

Since our goal is to find a monic polynomial of smallest height that defines K, and such

a polynomial clearly exists1, let TF denote one of them. Though uniqueness of TF is not

guaranteed — for instance TF (−X) also defines K and there might be others — any of these

polynomials achieves our goal and more importantly, the minimal height H (TF) is well-defined.

Let θF be a root of TF ; since TF is monic, θF belongs to OK. Thus, we can write

TF (X) =∏(
X −σ j (θF)

)
.

As Cohen and Diaz y Diaz did for the algorithm described in Section 2.4.1, we remark that

the vector σ(θF) in the ideal lattice σ(OK) should be small in a certain sense. Indeed the

coefficients of TF , that are the symmetric polynomials in the coordinates of the vector, are

expected to be small. However, we need to replace the notion of smallness by something more

adapted than the L2-norm of the vector.

This is precisely the idea behind our algorithm: to consider all small enough vectors in the

lattice until we find one that defines a minimal polynomial and can prove that this polynomial

is indeed of minimal height. In order to do that, let us first focus on the target solution TF

and the corresponding vector σ(θF) = [σ1(θF), . . . ,σn(θF)]. Remark that when all entries of TF

have roughly the same size, its L2-norm is also small. In that case, the algorithm of Cohen and

Diaz y Diaz succeeds in finding TF . However, when the sizes of the entries are unbalanced,

success is no longer guaranteed. For a more precise analysis, let us introduce a parameter

c > 1 whose value is determined later to minimize algorithmic complexity2. Now, consider

the vector
[
logc |σ1(θF)|, . . . , logc |σn(θF)|] that describes the relative sizes of the coordinates

of σ(θF). Then, round each value up to the smallest possible non-negative integer, this gives

a vector bF = [
bF

1 , . . . ,bF
n

]
. Since TF is monic, by definition, the Mahler measure M(TF) is

the product of the values max(1, |σi (θF)|) and we can write the following inequality between

M(TF) and the vector bF :

c
∑

bF
j −n ≤ M(TF) ≤ c

∑
bF

j .

In particular, this guarantees thanks to Equation (1.7) that

n∑
j=1

bF
j ≤ logc M(TF)+n ≤ logc H(TF)+ 1

2
logc (n +1)+n. (3.4)

1We recall that we consider the smallest-height defining polynomial among the monic polynomials
2It is done in Section 3.3.3 and it turns out that the optimal choice is c = exp(1).

80

3.2. An optimal algorithm for NF defining polynomial reduction

Given the vector bF of weights bF
i , we can introduce a weighted version of the lattice

corresponding to OK in Rr1 ×Cr2 . The weighted lattice is generated by the vectors

Ω̃i =
[
σ1(ωi)

cbF
1

, . . . ,
σn(ωi)

cbF
n

]
.

In this new lattice, θF is associated to the vector

σ̃(θF) =
[
σ1(θF)

cbF
1

, . . . ,
σn(θF)

cbF
n

]
.

Note that, by construction, each coordinate of σ̃(θF) is absolutely bounded by 1 so that its

L2-norm is bounded by
p

n.

As in Section 2.4.1, we could work with the Gram matrix of the lattice and, for instance, use

the implementation provided by [EJ17]. However, as an alternative and because it eases the

explanation, we prefer to describe the enumeration process by using real vectors. Thus we

replace the lattice in Rr1 ×Cr2 by the related lattice in Rn , as explained in Section 1.2.2. A third

option would be to work directly with the complex lattice as it is described in [GLM09]. First,

remark that sinceσr1+i =σr1+i+r2 , we necessarily have bF
r1+i = bF

r1+i+r2
. As a consequence, only

the first r = r1 + r2 coefficients of the weight vector bF are needed to describe the weighted

lattice, which is generated by

Ω̃i
R =

[
σ1(ωi)

cbF
1

, . . . ,
σr1 (ωi)

cbF
r1

,

p
2ℜ(

σr1+1(ωi)
)

cbF
r1+1

,

p
2ℑ(

σr1+1(ωi)
)

cbF
r1+1

, . . . ,

p
2ℑ(

σr1+r2 (ωi)
)

cbF
r1+r2

]
.

In the lattice generated by the Ω̃i , the vector corresponding to the integer θF has all its

entries of norm at most 1. Thus its L2-norm is bounded by
p

n. Due to the equality of the

L2-norm (see Remark 1.2.7), this bound also holds in the lattice generated by the Ω̃i
R

.

As a consequence, our algorithm simply aims at enumerating all the possible weighted

lattices — i.e., all the possible vectors of weights — and all vectors of L2-norm at most
p

n in

these lattices. However, doing that directly would be sub-optimal, since for any integer θ in OK,

we would also consider many shifted copies θ+ j with j ∈ Z. To avoid that, we work instead

with a lattice projected orthogonally with respect to the vector Ω̃1
R

to find a candidate θ. Then,

finding the best θ+ j takes polynomial time in n. The resulting algorithm is described as

Algorithm 2 and how finding j and precision issues are discussed later in this chapter.

If the a priori bound BF is correct, we know that θF belongs to one of the weighted lattices

that we have encountered. Thus, the last memorized polynomial in Algorithm 2 is — one of

the possible — TF . Otherwise, if the input bound does not hold, the algorithm asserts this fact,

as there is no polynomial stored.

81

Chapter 3. Reduction of the defining polynomial

Algorithm 2 Search for a minimal-height defining polynomial.

Input: An integral basis ω1, . . . ,ωn of OK and an a priori bound BF on logc H(TF).

Output: A polynomial TF whose height is minimal among all the defining polynomials.

1: Fix k = 0, let Bound = ⌊
BF + 1

2 logc (n +1)
⌋+n

2: for (b1, . . . ,bn) ∈ Nn such that br1+i = br1+r2+i and
n∑

j=1
b j = k do

3: Construct the weighted lattice generated by the vectors

Ω̃i
R =

[
σ1(ωi)

cb1
, . . . ,

σr1 (ωi)

cbr1
,

p
2ℜ(

σr1+1(ωi)
)

cbr1+1
, . . . ,

p
2ℑ(

σr1+r2 (ωi)
)

cbr1+r2

]

(since the lattice has real entries, algorithmically we replace it by a sufficiently precise

fixed point approximation and scale it up to an integer lattice)

4: Project the vectors Ω̃i
R

for i ∈ {2, . . . ,n} orthogonally with respect to Ω̃1
R

5: Enumerate all vectors of L2-norm at most31.001
p

n in this projected lattice

6: for each short vector v⊥ do

7: Lift v⊥ to the shortest possible vector v in the full lattice (this can be done

efficiently by using Gauss’ algorithm on the two-dimensional lattice spanned

by Ω̃1
R

and an arbitrary lift of v⊥)

8: Reconstruct the corresponding polynomial

Tv (X) =
r1∏

j=1
(X − v j) ·

r2∏
j=1

(
(X − vr1+2 j−1 − i vr1+2 j) · (X − vr1+2 j−1 + i vr1+2 j)

)
9: if Tv is irreducible then

10: Find the integer j that minimizes the height of Tv (X + j)

11: Store Tv (X + j) if it has the smallest height encountered until this point

12: When storing Tv (X + j),

update Bound to
⌊

logc H(Tv (X + j))+ 1
2 logc (n +1)

⌋+n

13: end if

14: end for

15: end for

16: Increment k by 1

17: if k ≤ Bound then goto 2

18: else Stop

19: end if

3With an exact representation of the lattice, it would suffice to enumerate vectors of norm below
p

n. The 1.001
factor comes from the fact that we are dealing with an approximation of the lattice. See the paragraph on precision.

82

3.2. An optimal algorithm for NF defining polynomial reduction

Finding j . In the algorithm, we need to find the integer j that minimizes the height of

Tv (X + j). This can be done in polynomial time. Indeed, each coefficient of Tv (X + j) (viewed

as a polynomial in X) is a polynomial in j . We thus want to minimize (over the integers)

the maximum of the absolute values of n polynomials — since Tv (X + j) is monic, we do

not need to include the coefficient in front of X n in the minimization. This can be restated

as minimizing the maximum of 2n polynomials: the coefficients and their opposites. This

function is a continuous positive piecewise-polynomial real function. The transition from

one piece to the next necessarily occurs at a root of the difference between two out of the 2n

polynomials. Thus, there are at most O
(
n3

)
pieces. In each piece, it is easy to minimize

over the reals and then over the integers by considering the two integers closest to this real

minimum — ignoring the integer values lying outside of the current piece. As a consequence,

the best value for j can be found in polynomial time.

Precision. At the beginning of the algorithm, the lattice generated by the vectors Ω̃i
R

is

replaced by a “sufficiently” precise fixed point approximation and then scaled up to an integer

lattice. In order to make the description of the algorithm complete, we need to specify the

corresponding precision. The key point is that the precision should be high enough to ensure

that any short vector of the exact lattice corresponds to a short vector of the approximate

lattice. Indeed, we are essentially enumerating all vectors of length bounded by
p

n and we

want to make sure that none of those can be overlooked. Let v be a vector of norm at most
p

n

of the exact lattice. We can write

v =
n∑

i=1
vi Ω̃i

R
with integer coeffients vi .

In order to make sure that the vector of the approximate lattice is also short, i.e., shorter

than 1.001
p

n, the precision should be good enough for the sum of products of the coeffi-

cients vi by the approximation error to be smaller than a constant. In particular, it is enough

to require that the maximum of the vi times the approximation error is smaller than 1
1000n .

As a consequence, in order to bound the necessary precision, it suffices to upper bound

the coefficients vi . A classical technique to obtain such a bound is to start from a lower

bound on the orthogonalized vectors of the initial basis and remark that the coefficients vi

are upper bounded in absolute value by
p

n times the inverse of this bound. To obtain a

lower bound on a given ‖b∗
i ‖, we can divide the determinant of the lattice by the norms of all

the vectors but the corresponding bi . The determinant of the scaled lattice at iteration k of

the algorithm is
p|∆K|c−k . Thanks to [Poh93, Chapter V - Lemma 1.1], we know that, in the

basis of the ring of integers of K computed from the input polynomial Tin, the vector ωi is a

polynomial of degree i −1 in the roots of T . Moreover, the coefficients of this polynomial are

83

Chapter 3. Reduction of the defining polynomial

in the interval [−1,1]. As a consequence, the norm of σ(ωi) can be upper bounded by i
p

n Z

where Z denotes the largest complex modulus among the roots of T . In particular, Z ≤ M(T).

Putting all this together, we can upper bound the coefficients vi at iteration k by

ck M(T)n2
n1.5n

|∆K|
.

Thus, it suffices to work with a precision k log2(c)+n2 log2 M(T)+1.5n log2(n)+ log2(1000n),

which is polynomial in the size of the input polynomial. This precision is also sufficient for

performing the reconstruction of Tv from the complex embeddings, rounding each coefficient

to the nearest integer (see [Bel04, Section 3.2] for more details).

From a practical perspective, the implementation of Espitau and Joux can be used. Using

interval arithmetic, they are able to perform lattice reduction — and so enumeration of small

vectors — and certify that the approximated output result is an exact solution. In addition,

as we mentioned, it works directly with the Gram matrix as input. Thanks to our analysis, we

know that the required precision is reasonable, so that we can make use of their algorithm.

Pseudo-canonical polynomial. For some applications, such as the construction of tables

of number fields, it is useful to have a canonical polynomial that represents a given number

field. In that case, it is not difficult to add in the above algorithm an arbitrary criterion such

as lexicographic order on the coefficients to single out one of the possible minimal-height

polynomials. Indeed, all of them are encountered during the enumeration.

3.3 Complexity analysis

Now we have described our algorithm, in order to understand its algorithmic complexity, we

need to count the number of lattices involved and to study the cost of short vector enumer-

ation in each lattice. We restrict ourselves to primitive number fields for this analysis. For

imprimitive fields, the algorithm still works but its complexity may be higher due the possibil-

ity of encountering a much larger number of algebraic integers that generate subfields during

the short vector enumerations. We leave as an open problem the adaptation of the techniques

used in PARI/GP [PARI] for the algorithm of Cohen and Diaz y Diaz with imprimitive fields to

our method. In our complexity analysis, we ignore the cost of computing an integral basis for

the maximal order of the field K, because it is already required for the class group computation

itself. According to Section 1.2.4, the complexity of this step is dominated by the factorization

of the discriminant of the input polynomial. Thanks to the NFS, this can be done in time L
(1

3

)
and depending on Tin, it may be the most costly part of the complete computation.

84

3.3. Complexity analysis

3.3.1 Number of lattices

When the input bound BF is incorrect, the number of lattices that are explored is a function

of BF . When BF is correct, thanks to the updating of the bound when a new polynomial is

found, the number of lattices depends on the highest value of k that is reached and this value

is at most logc H(TF)+ 1
2 logc (n +1)+n according to Equation (3.4). Thus, the exact runtime

depends on the quality of the output: it is faster to find polynomials with a smaller height.

Let us consider each iteration of the outer loop: for iteration k, the number of lattices is

simply the number of vectors (b1, . . . ,bn) ∈ Nn that satisfy the two constraints br1+i = br1+r2+i

and
n∑

j=1
b j = k. To obtain an upper bound, we can forget the first constraint and just count the

number of vectors such that
∑

b j = k. It is a classical combinatorial result that this number

is
(k+n−1

n−1

)
. Hence, the total number of lattices considered by the algorithm is

kF∑
k=0

(
k +n −1

n −1

)
=

(
kF +n

n

)
≤ (kF +n)n

n!
, (3.5)

where kF is the value of k in the last iteration, i.e.,

kF =
⌊

min
(
BF , logc H(TF)

)+ 1

2
logc (n +1)

⌋
+n.

Bound on kF and classes Dn0,d0,α,γ . Given as input a number field that we know to belong

to a class Dn0,d0,α,γ, we can simply set the value of BF given to the algorithm to

BF =
⌊

d0

logc
(log |∆K|)γ(loglog |∆K|)1−γ

⌋
.

Moreover, since we are limiting ourselves to the cases α≤ 1
2 ≤ γ, then n is negligible compared

to BF and kF +n = BF (1+o(1)).

We conclude that the number of lattices in the enumeration is upper bounded by (BF (1+o(1)))n

n!

and so by L|∆K|(α,γn0 − α
n0

).

3.3.2 Cost of each enumeration

The second analysis treats the enumeration phase for each weighted lattice. We recall that

we are interested in all vectors whose Euclidean norm is below
p

n. A slight modification of

Kannan’s SVP algorithm leads to a satisfactory enumeration approach, the complete analysis

of which can be found in [HS07]. Note that the resulting enumeration cost includes the HKZ

reduction of the basis.

85

Chapter 3. Reduction of the defining polynomial

Proposition 3.3.1. Enumerating all vectors of norm below
p

n in one of our weighted lattices

can be done in at most Poly
(
log |∆K|

) ·n
n
2e +o(n) binary operations.

Proof. This is mostly a consequence of the results of [HS07], which gives a two-step strategy

for enumerating the short vectors of a lattice. The first step is to compute an HKZ-reduced

basis of the lattice and the second to enumerate the short vectors using this HKZ-reduced

basis. Thanks to the high quality of the reduced basis, the enumeration process is greatly

speeded up.

The complexity of the enumeration process is analyzed in [HS07, Section 4.1]. Assuming

that we have a n-dimensional lattice given by a basis (b1, . . . ,bn) with Gram-Schmidt orthog-

onalization denoted by (b∗
1 , . . . ,b∗

n) and that we wish to enumerate all vectors of L2-norm at

most A. Then the complexity expressed in number of arithmetic operations is

2O(n) · max
I⊂[1...n]

 A|I |
p

n|I | ∏
i∈I

‖b∗
i ‖

 .

Moreover, [HS07, Theorem 3] states that for an HKZ-reduced basis, for all subsets I

of [1. . .n], we have
‖b1‖|I |∏

i∈I
‖b∗

i ‖
≤ p

n
|I |+ n

e .

As a consequence, in terms of arithmetic operations, enumerating all vectors of L2-norm

at most λ‖b1‖ costs at most

2O(n) ·pn
n
e ·λn .

The preliminary step consisting in computing an HKZ-reduction of the lattice before doing

the enumeration does not dominate the complexity of the enumeration itself (see [HS07,

Theorem 2]).

In [HS07], the complexity is expressed in terms of bit operations for the case of an integer

lattice, given a bound on the larger integers appearing in the lattice basis. In our case, as

already explained after Algorithm 2, we work with an integer lattice built from approximations,

with entry sizes polynomial in the size of the input polynomial.

Finally, to apply the result to our case, we need to note that whenever we are enumerating

in the lattice corresponding to a weight vector [b1, . . . ,bn], we know that the weight vector

[max(b1 −1,0), . . . ,max(bn −1,0)] cannot have led to a successful short vector during the enu-

meration earlier in the algorithm. Thus, due to the primitivity of the field, there is no vector

of L2-norm smaller than
p

n in this lattice. As a consequence, there is no non-zero vector of

L2-norm smaller than
p

n
c in the current lattice, associated to [b1, . . . ,bn]. Therefore we are

86

3.4. Application to class group computation

performing enumeration with a ratio factor λ that is at most c. We conclude that the cost of

enumeration in bit operations is upper bounded by

Poly
(
log |∆K|

) ·2O(n) ·n
n
2e · cn ≤ Poly

(
log |∆K|

) ·n
n
2e +o(n). (3.6)

Note that for the first lattice in the enumeration process — i.e., σ(OK), the one used by

Cohen and Diaz y Diaz in their algorithm — it is also directly known that it contains no vectors

of L2-norm smaller than
p

n.

We remark that n
n
2e +o(n) = L|∆K|

(
α, αn0

2e

)
. By multiplying with the number of lattices in-

volved, we find that the final complexity can be expressed as

L|∆K|
(
α,γn0 − α

n0
+ αn0

2e

)
,

which becomes arbitrarily close to L|∆K|
(
α,γ − 2e−1

2e α
)

when n0 is taken close to 1.

3.3.3 Optimal choice for c

Once the complexity analysis is done, it remains to study carefully the dependence on c in

order to minimize the constant term. Assuming that the output polynomial defines a number

field K in Dn0,d0,α,γ such that γ≥α — namely the case of application to class groups — then

the global complexity we found is bounded by (see Equation (3.6))(
d0

logc (log |∆K|)γ(loglog |∆K|)1−γ(1+o(1))
)n

n!
·Poly

(
log |∆K|

) ·2O(n) ·n
n
2e · cn .

As we want to find the best c, we only look at the dependence on c, which can be approxi-

mated as (
1

logc

)n

· cn =
(

c

logc

)n

,

and whose minimum is achieved by fixing c at exp(1).

3.4 Application to class group computation

Let us get back to class group computation. We recall that Biasse and Fieker find a way to

reduce the complexity of their algorithm for certain classes of — orders in — number fields.

Given a number field K ∈ Cn0,d0,α — defined by a polynomial T satisfying Equation (3.1) — they

are able to compute the class group and a compact representation of a fundamental system of

87

Chapter 3. Reduction of the defining polynomial

units of this order in time L|∆K|(a,c) for 1
3 ≤ a < 1

2 depending on the parameters of the class

and c > 0.

We now want to investigate the theoretical impact of using a minimal-height defining

polynomial for class group computations. Note that the existence of such a polynomial

ensures that K lies in a certain class Dn0,d0,α,γ with γ ∈ [1−α,1]. If γ reaches the lower bound

γ= 1−α, then K ∈ Dn0,d0,α,1−α and we can apply the conditional improvement4 of [BF14] to

this field. Our idea is then to add our algorithm as a precalculation to theirs in order to find

the parameters required to fit K in such a class, if possible.

Doing this enables to extend the applicability of the algorithm of Biasse and Fieker to

every number field in a class Dn0,d0,α,1−α, even if the number field is not initially given by a

small-height defining polynomial. It remains to check that the cost of this precalculation does

not outweigh the global complexity of the rest of the class group computation. We know from

Section 3.3 that our algorithm runs in time L|∆K| (α) in that case. This never dominates the cost

of their class group algorithm, thus we can state the following extended result.

Theorem 3.4.1. Under ERH and smoothness heuristics, for every number field K ∈Dn0,d0,α,1−α,

there exists an L|∆K|(a,c) algorithm for class group and unit group computation for some c > 0

and a satisfying a ≥ max
(
α, 1−α

2

)
.

Furthermore, our new classes D built from four parameters allow us to more widely

generalize the work of Biasse and Fieker to all number fields having α≤ 1
2 :

Theorem 3.4.2. Under ERH and smoothness heuristics, for every number field K ∈Dn0,d0,α,γ,

there exists an L|∆K|(a,c) algorithm for class group and unit group computation for some c > 0

and a = max
(
α, γ2

)
.

Proof. This is only a generalization of the work of Biasse and Fieker and we make use of the

same heuristics. Their final result mainly relies on [BF14, Theorem 3.1]. In fact we need to

adapt the norm bounds appearing in the proof of this theorem to our more general classes.

More precisely, we find that:

For all number fields K in Dn0,d0,α,γ, we can find a B-smooth ideal equivalent to a |∆K|-
smooth ideal a ⊆OK with a decomposition in degree 1 prime ideals in time L|∆K|(b,µ) for

some µ≥ 0 where B = Ł|∆K|(a,ρ) for some ρ ≥ 0, provided that a and b satisfy

(i) b ≤ γ≤ a +b; (i i) α+γ≤ a +2b; (i i i) α+γ≤ 2a +b; (i v) α≤ b.

4More precisely the adaptation of this improvement to the classes C′.

88

3.4. Application to class group computation

The proof is exactly the same, except that we modify the exponent appearing in the

definition of k. The value 1−β− τ
2 in their proof then becomesα+γ−β− τ

2 in our generalization

and the remaining part follows as in [BF14].

We thus conclude from this theoretical analysis that our algorithm for reducing number

field defining polynomials widens the set of number fields whose class group and unit group

can be computed with runtime L|∆K|(a), 1
3 ≤ a < 1

2 . The experimental results below illustrate

that it also offers a good behavior on practical examples.

3.4.1 Experimental results

We have implemented a prototype of our algorithm under MAGMA 2.21.65 [Magma]. The pre-

cision and the parameter c are fixed by the user. It slightly differs from the description in

Section 3.2 since our code enumerates all the elements of norm below
p

n in each weighted

lattice, instead of doing the minimization of the height of Tv (X + j). Indeed, for the practical

examples we have considered, it is faster to proceed in that way. Furthermore, when a polyno-

mial T (better than the input polynomial) is found, our code offers two options. The first is

to stop immediately, since it appears that in practice the first polynomial to be found usually

has minimal height. Despite the fact that this early abort does not certify the minimality, it is

a good practical compromise for class group computations. Another approach when a first

polynomial is found is to directly increment k to the value
⌊

logc H(T)+ 1
2 logc (n +1)

⌋+n. This

skips intermediate computations which are often useless and directly goes to checking that

the polynomial T has minimal height.

In our implementation, we do not fix the parameter c to exp(1) as in the asymptotic

analysis. Instead, we remark that using a large c allows for smaller values of k and makes the

code run faster for finding a first candidate with small height. However, to find a minimal-

height polynomial, smaller values of c are better. This can be seen on the examples given

in Table 1.

Example 3.4.3. As a first benchmark, we consider the polynomial t 12 +4t 11 −17t 10 −68t 9 +
108t 8+416t 7−314t 6−1129t 5+358t 4+1353t 3−36t 2−540t −72 given as an example in [Poh93,

Section V.3]. This polynomial is obtained by using the algorithm of Cohen and Diaz y Diaz to

a polynomial with huge coefficients; it defines a suborder of index 670150656 of the ring of

integers. More precisely, the vector corresponding to the above polynomial appears as the

second vector in the reduced basis after LLL reduction. The fourth vector of the same basis

yields a better polynomial with smaller height (505) and smaller index (439826112).

5Our prototype is prior to the results of Espitau and Joux [EJ17]. It would be interesting to refine our code using
theirs.

89

Chapter 3. Reduction of the defining polynomial

With our algorithm , we find an even better polynomial:

t 12 −14 t 11 +25 t 10 +62 t 9 −155 t 8 −50 t 7 +263 t 6 −50 t 5 −155 t 4 +62 t 3 +25 t 2 −14 t +1,

whose associated order has index 419904 — and whose height is 263. In addition, this polyno-

mial is palindromic and, thus, reveals an underlying symmetry of the corresponding number

field which was not apparent from the other defining polynomials.

Example 3.4.4. To illustrate practically what changes in class group computation, we choose

an example having smaller degree and larger coefficients:

x5 −5843635x4 +931633x2 +6577x −8570.

Our implementation of the reduction algorithm certifies that this polynomial has minimal

height.

If we give it to MAGMA V2.21.6 in order to compute the class group of the associated number

field, it first “reduces” the polynomial as

x5 −2x4 −8001397580x3 −31542753393650x2 +3636653302451131875x +4818547529425280067500

and then finds the class group — assuming ERH — in about 285 seconds, on the laptop we

used for all our experiments. More precisely, according to the output of the verbose mode, it

seems that MAGMA derives the relations by sieving on different polynomials. Those polynomials

are chosen as minimal polynomials of algebraic integers of the form θ+b
c , where θ is the

second element of the LLL-reduced integral basis of OK. We have reconstructed the “reduced”

polynomial from this information: it is the minimal polynomial of θ. MAGMA uses 2306 different

sieving polynomials: 663 lead to 0 relations, 748 to 1 relation, 498 to 2 relations and 397 to at

least 3 relations. None of them produce more than 8 relations.

In MAGMA V2.19.10, class group computation is not as optimized as in V2.21, but there is no

reduction algorithm: MAGMA directly works with the input polynomial. Thus, we can compare

the efficiency of using either of the two polynomials:

• with x5 −5843635x4 +931633x2 +6577x −8570, it takes about 140 seconds,

• with the “reduced” one, it takes about 3240 seconds.

We see that using the old version with a minimal-height polynomial is even faster than the

new version, despite the huge optimizations in the class group computation code. For a more

detailed comparison, using the best polynomial as input, the old version only sieves on 58

different polynomials and the first one already leads to 784 relations. Consequently, we doubt

of the efficiency of the reduction step added in the new version.

90

3.4. Application to class group computation

Note that our implementation in MAGMA finds this minimal-height polynomial from the

“reduced” one in less than 1.5 second. It also certifies that it is indeed of smallest height.

Thus, in this practical case, the reduction algorithm takes negligible time and using it as a

precomputation can greatly speed up the class group computation.

Example 3.4.5. Finally, we run our implementation on sets of number fields stored in the

online Class Group Database [CGD]. For each degree n ∈ {3,4,5,7}, we pick 100 number fields

having discriminant about b bits and we try to reduce the polynomial T0 given in the table.

For each degree, we consider two different sizes of discriminants in order to observe how the

algorithm behaves as the discriminant grows.

To illustrate the improvement compared to the previously tabulated polynomial, we com-

pute the ratio r = log H(TF)
log H(T0) , where TF denotes the output polynomial.

n log2 |∆K| Early abort Proven minimal height
c avg. r minr maxr avg. time c avg. r minr maxr avg. time

3
20 10 0.652 0.435 0.860 7 ms 2 0.651 0.435 0.860 49 ms
40 10 0.635 0.381 0.741 17 ms 3 0.634 0.381 0.736 131 ms

4
25 10 0.607 0.393 0.868 18 ms 2 0.604 0.393 0.868 1.0 s
40 10 0.547 0.446 0.806 108 ms 3 0.544 0.446 0.806 6.6 s

5
50 10 0.724 0.567 0.955 109 ms 3 0.715 0.567 0.955 4.8 s
80 10 0.698 0.555 0.852 820 ms 4 0.695 0.555 0.852 14.7 s

7
80 20 0.712 0.519 0.970 1.7 s 4 0.701 0.519 0.970 749 s

100 20 0.700 0.537 0.843 6.3 s − − − − −

Table 1: Gain in the size of the height after reduction, r = log H(TF)
log H(T0)

As a conclusion, for every number field in the database, there exists a defining polynomial

with smaller height, sometimes as small as the square root of the height of the input polynomial.

In addition, we can observe the good behavior of the early-abort version since the values

obtained in that way closely coincide with the minimal values.

91

Chapter 4

Refinements for complexities

appearing in the literature for the

general case

Contents

4.1 The classification defined by classes D is sufficient 94

4.2 The relation collection . 97

4.2.1 Description of the algorithm of Biasse and Fieker 97

4.2.2 Our proposition for a simpler algorithm 99

4.2.3 Parameter settings . 101

4.3 Complexity analyses . 102

4.3.1 The case α≤ 3
4 . 102

4.3.2 The case α> 3
4 . 103

4.4 Using HNF to get an even smaller complexity 104

93

Chapter 4. Refinements for complexities appearing in the literature for the general case

Before we consider the consequences of having small defining polynomials, which is done

in the next chapter, we take care of the general case, when no good polynomials are known

and the extension degree is too large to find one. As recalled in Section 2.3.3, the current best

algorithm for the general case is the algorithm presented by Biasse and Fieker in [BF14]. Their

work is already mostly described in Chapter 2 so we only present the relation collection here.

After describing the way they do it, we give a simplified version of the algorithm and a detailed

analysis of its complexity. We then provide a more accurate and improved complexity, using

the classes D we have introduced in Chapter 3. Finally we present an improved version of the

collection, based on the Cheon’s trick detailed in Section 1.1.3, in order to further reduce the

complexity for large degree number fields.

4.1 The classification defined by classes D is sufficient

For the discrete logarithm problem in finite fields, all the fields are classified according to

the relative size of their characteristic — small, medium or large. Our purpose is to derive a

similar classification for the number fields. For finite fields, the cardinality Q is completely

determined by the characteristic p and the extension degree n, according to the equation

Q = pn . For number fields, the extension degree remains, but the characteristic is replaced by

the size of the defining polynomial, represented by its height H(T). Unfortunately, number

fields do not provide any equality similar to Q = pn for finite fields, but only the inequality of

Equation (1.8):

|∆K| ≤ n2n H(T)2n−2.

Therefore, we choose the extension degree as the main parameter of our classification.

The Minkowski’s bound (Equation (2.3)) induces that n =O(log |∆K|), because every non-zero

integral ideal has a norm in N∗. Thus we want to express n in terms of log |∆K|. Fortunately,

this choice is a perfect match with the classes D introduced in Chapter 3.

Definition 4.1.1. Let n0 > 1 be a real parameter arbitrarily close to 1, d0 > 0, α ∈ [0,1] and

γ≥ 1−α. The class Dn0,d0,α,γ is defined as the set of all number fields K of discriminant ∆K

that admit a monic defining polynomial T ∈ Z[X] of degree n that satisfies Equation (3.3):

1

n0

(
log |∆K|

loglog |∆K|
)α

≤ n ≤ n0

(
log |∆K|

loglog |∆K|
)α

and

d = log H(T) ≤ d0(log |∆K|)γ(loglog |∆K|)1−γ.

We recall that the factor loglog |∆K| is introduced to simplify the complexity analysis,

while the condition γ≥ 1−α is a direct consequence of Equation (1.8). We emphasize that

94

4.1. The classification defined by classes D is sufficient

the extension degree carries more information than the size of the coefficients of a defining

polynomial — while giving the extension degree or the characteristic of a finite field carries

the same information. Indeed, there exists an infinity of defining polynomials, and the quality

of the smallest one depends on the number field: it is not known that we can always find one

satisfying the lower bound γ= 1−α. That is why classifying number fields by their extension

degree n — that is by α ∈ [0,1] — makes more sense. Then, for each α, there exists additional

disparities according to γ, which is always greater than 1−α.

Thanks to the algorithm described in Chapter 3, we can restrict our study to the classes D
with γ≤ 1 when α is in

[
0, 1

2

]
. In these cases, Theorem 3.4.2 shows that we can compute the

class group in time below L|∆K|
(1

2

)
. When α≥ 1

2 , it is too costly to look for a small polynomial.

We focus in this chapter on large degree number fields, the ones where α≥ 1
2 .

At this point, it still remains to prove that considering classes D with α ∈ [0,1] suffices.

At first sight, the Minkowski Theorem only results in n = O(log |∆K|) and implies that every

number field belongs to a class D with α≤ 1+ε for an arbitrarily small ε> 0. However, a more

accurate analysis leads to the following result:

Proposition 4.1.2. Given n0 > 1 and α > 1, there does not exist an infinite family (Ki)i≥1 of

number fields with discriminants |∆Ki | and degrees ni that satisfy

1

n0

(
log |∆Ki |

loglog |∆Ki |
)α

≤ ni ≤ n0

(
log |∆Ki |

loglog |∆Ki |
)α

.

Proof. We proceed by contradiction. Let (Ki)i≥1 be an infinite family of number fields whose

degrees ni satisfy
1

n0

(
log |∆Ki |

loglog |∆Ki |
)α

≤ ni .

We provide an upper bound in the statement of the proposition as it is in the definition of

classes D. However, we only consider this inequality because it is the one that is problematic.

The Minkowski’s bound (Equation (2.3)), derived from the theorem states that for a field K of

degree n,
nn

n!
·
(π

4

) n
2 ≤

√
|∆K|. (4.1)

Combining Equation (4.1) with the inequality n! ≤ e nn+ 1
2 e−n derived from the Stirling

formula [Moi30, Sti30], we obtain n
(
2+ log π

4

)≤ log |∆K|+2+ logn. Let A denote the constant

2+ log π
4 > 1. Then for all i ≥ 1, we have

A

n0

(
log |∆Ki |

loglog |∆Ki |
)α

≤ log |∆Ki |+2+ logn0 +α
(
loglog |∆Ki |− logloglog |∆Ki |

)
95

Chapter 4. Refinements for complexities appearing in the literature for the general case

=⇒ 0 < A

n0
≤

(
loglog |∆Ki |

)α(
log |∆Ki |

)α−1 + (
2+ logn0 +α loglog |∆Ki |

) ·(loglog |∆Ki |
log |∆Ki |

)α
.

Finally, as the set of number fields having bounded discriminant is finite, it follows from

our initial assumption that the family of discriminants
(|∆Ki |

)
i≥1 tends to infinity. But in that

case, as α is chosen strictly greater than 1, the right hand side tends to 0, which leads to a

contradiction.

Example 4.1.3. To illustrate this proposition, we consider cyclotomic fields, which are known

to be fields with small discriminants and large degrees.

For the l-th cyclotomic field K = Q(ζl), with l =∏
pki

i and denoting by ϕ the Euler totient

function, the extension degree satisfies

[Q(ζl) : Q] =ϕ(l) =∏
ϕ

(
pki

i

)
=∏

(pi −1)pki−1
i ,

and the discriminant is (see [Was97, Proposition 2.7])

|∆K| = l
ϕ(l)∏

pϕ(l)/pi−1
i

.

Thus we obtain

ϕ(l) = log |∆K|
loglog |∆K|

·
∑

(ki −1)log pi + log(pi −1)∑
(ki − 1

pi−1) log pi

(
1+o(1)

)
, (4.2)

and as (ki −1) log pi +log(pi −1) ≈ (ki − 1
pi−1) log pi when pi or ki tends to infinity, we conclude

that the ratio of the sums tends to 1 when l tends to infinity.

For instance, when l = p, the second factor in Equation (4.2) is p−1
p−2

log(p−2)+loglog p
log p , which

tends to 1 as p goes to infinity, while for l = pk with p fixed and k tending to infinity, the

second factor becomes k
k− 1

p−1
(1+o(1)).

Hence all cyclotomic fields asymptotically belong to a class D with α= 1. Finally, Proposi-

tion 4.1.2 leads to the following statement:

Corollary 4.1.4. Asymptotically, the classes Dn0,d0,α,γ with α ∈ [0,1] include all number fields.

Note that despite Corollary 3.1.3, we do not specify the condition γ ∈ [1−α,1] in this

result. Indeed when α≥ 1
2 , finding the smallest height defining polynomial costs more than

computing the class group. In these cases, it is preferable to work with the input polynomial.

Another possibility is to perform only a partial reduction. More precisely, we may use the

reduction algorithm described in [Coh93, Section 4.4] which consists in computing an LLL-

reduced basis of the lattice of algebraic integers. Assuming that an integral basis is already

96

4.2. The relation collection

known, the runtime is polynomial in log |∆K|. Eventually, for the rest of the chapter, we focus

our study on classes D with α ∈ [1
2 ,1

]
and γ ≥ 1−α. Indeed, although the algorithm works

for α≤ 1
2 , the complexity is larger than what we have obtained in Chapter 3.

4.2 The relation collection

The core idea is presented by Biasse in [Bia14b]: the generation of the relations based on

BKZ-reductions of ideal lattices. The strategy is still the same as Buchmann’s work: we reduce

an ideal a, using lattice techniques, in order to find another ideal b that belongs to the same

class (see Section 2.3.2). While the algorithm of Buchmann looks for a shortest non-zero vector

— whose runtime is polynomial in the size of the discriminant but exponential in the extension

degree — the method of Biasse involves BKZ-reductions, that offer a trade-off between the

time spent in the reduction and the approximation factor of the short vectors, as explained

in Section 1.1.3. This leads to a subexponential algorithm that allows both the discriminant

and the degree to tend to infinity. When combined with the linear algebra and regulator

computation, it leads to the following theorem from [BF14]:

Theorem 4.2.1. [BF14, Theorem 6.1] Under ERH and smoothness heuristics, the presented

algorithm computes the class group structure together with compact representations of a funda-

mental system of units of a number field K of degree n and discriminant ∆K in time L|∆K|(a) for

• a = 2
3 +ε for ε> 0 arbitrary small in the general case;

• a = 1
2 when n ≤ (log |∆K|)3/4−ε for ε> 0 arbitrary small.

Figure 1 presents the complexity of class group computations as a function of α, i.e., the

extension degree, prior to the improvements that are presented later in this chapter. It is based

on the classification obtained in Section 4.1 and, for α≤ 1
2 , on Chapter 3.

4.2.1 Description of the algorithm of Biasse and Fieker

In [Bia14b], and so in [BF14], the relation collection is derived from a reduction algorithm that

given an ideal a returns a smooth ideal b that is in the same class as a. Then, applying this

reduction to every ideal belonging to the factor base, we get the relations we are expecting.

We recall that the factor base B = {p1, . . . ,p|B|} consists of all prime ideals of OK whose

norm is below a bound B = Ł|∆K|(β,cb), for β ∈ [0,1] and cb > 0. We also fix ε > 0 arbitrarily

small and a an ideal of OK.

From the ideal a, Biasse and Fieker derive an ideal c, also in OK, by c=N (a)·a−1. This step

consists of taking the inverse of a, and includes a norm multiplication to keep an integral ideal.

97

Chapter 4. Refinements for complexities appearing in the literature for the general case

depending on γ

L|∆K|
(1

2

)
L|∆K|

(2
3 +ε

)
L|∆K|

(
max(α, γ2)

)
[BF14] [BF14]

[Ch.3]

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 1: Complexity obtained by prior algorithms.

Then, similar to what Buchmann did, they choose an element x ∈ c, that is small in a certain

sense, and define b as the unique integral ideal that satisfies 〈x〉 = cb. This b is well-defined,

as x ∈ c implies 〈x〉 ⊂ c. Finally, b is in the same class as a, as b = 〈x〉c−1 =
〈

x
N (a)

〉
a. The

difference appears in the way to choose this small element x ∈ c: Biasse and Fieker replace

shortest vector computations as used by Buchmann by BKZ-reductions.

Because of the results presented in Section 1.4.4 on smoothness of ideals in number fields,

we know that we have to repeatedly select elements in a before finding one that leads to a

smooth ideal b. Hence, we require a randomization process that given the ideal a, produces

as many ideals as required to guarantee to get a smooth b. This is done by considering ideals

of the form a ·∏pei

i , where the pi are prime ideals whose norms are below the smoothness

bound B .

Then for each ideal ã=a ·∏pei

i , they compute the BKZβ-reduced basis of the integral ideal

c̃=N (ã) · ã−1, with a block-size β as determined below. This BKZ-reduction is performed on

the ideal lattice σ(c̃), defined by the canonical embedding of c̃. As recalled in Section 1.2.2, it

may be viewed as a lattice in Rn using the Minkowski map.

Denoting by xv the algebraic integer corresponding to the smallest vector v of the BKZ-

reduced basis, they set b̃=
〈

xv
N (ã)

〉
ã. Then b̃ is in the same class as ã and

N (b̃) ≤β n(n−1)
2(β−1)

√
|∆K|. (4.3)

Indeed N (c̃) =N (ã)n−1 and ‖v‖ ≤β n−1
2(β−1) N (c̃)

1
n |∆K| 1

2n from Theorem 1.1.10 and Lemma 1.4.9.

Then N (b̃) ≤
(‖v‖
N (ã)

)n
N (ã) leads to the expected result.

If b̃ splits over the factor base B, then there exist integers e ′i such that b̃ = ∏
p

e ′
i

i . Thus,

98

4.2. The relation collection

taking care of the randomized factor, we get that the ideal xv
N (ã)a also splits over B as

∏
p

e ′
i−ei

i .

In the end, if a splits over B, then the principal ideal〈
xv

N (a)

〉
also splits over B.

Therefore we have derived a relation in the kernel of the surjective morphism defined in

Equation (2.5). If b̃ does not split, then we try another ã. To bound the number of relations

that would be sufficient, they state the following heuristic. Because at least N = |B| are required,

they choose the largest bound that does not increase the complexity.

Heuristic 4.2.2. There exists a value K that is negligible compared with |B| such that collecting

K · |B| relations suffices to obtain a relation matrix that has full-rank.

Finally, using the right parameters and ideals a from the factor base, they get the complex-

ities given in Theorem 4.2.1. With a factor base size in L|∆K|(a) and a block-size (log |∆K|)a , the

overall complexity turns out to be in L|∆K|(a).

4.2.2 Our proposition for a simpler algorithm

Instead of precisely studying the complexity of the algorithm of Biasse and Fieker, we rather

provide a simpler version, more adapted to our problem. We focus on the relation collection

in class group computations for number fields, without using information brought by the

defining polynomial. Hence, ideals are viewed as lattices in Rn .

First we do not do the reduction of a specific ideal, but we take as inputs random power-

products of factor-base elements. Let k, A > 0 be integers in Poly(log |∆K|). We choose k prime

ideals p j1
, . . . ,p jk

in the factor base. For any k-tuple (e1, . . . ,ek) ∈ {1, . . . , A}k , we set a=∏k
i=1p

ei

ji

and we have

N (a) =N
(

k∏
i=1

pei

ji

)
≤

k∏
i=1

N
(
p ji

)ei ≤ L|∆K|
(
β,cb

)k·A .

This initialization step can be done by choosing uniformly at random the tuple (e1, . . . ,ek)

and k prime ideals in B. Since from Landau’s Theorem (Theorem 1.5.11), |B| = L|∆K|(β,cb), the

set of possible samples is large enough for our purposes. In addition, the norm of the input

ideals a is always polynomial in the size of the factor base.

Second we reduce the lattice defined by the ideal a itself, not its normalized inverse.

Instead of performing the normalization explained in the previous section, we directly search

for a small vector in the ideal a — more precisely, in the lattice σ(a) defined by the canonical

embedding. Hence we find a small vector v that is the embedding of an algebraic integer xv .

99

Chapter 4. Refinements for complexities appearing in the literature for the general case

Because xv lies in a, there exists a unique integral ideal b such that

〈xv 〉 =ab.

The attentive reader should point out that the ideals a and b do not belong to the same ideal

class as before. However, this is not so important, because b−1 for instance shares the same

class with a. Our ultimate goal is to figure out a principal ideal that is B-smooth, and this is

achieved with our method too. For the recovery of the algebraic integer, one can make use of

the transformation matrix corresponding to the variable change. Another possibility is to work

directly with the conjugates and go back to the algebraic representation using round-off, as

mentioned in Section 1.2.3.

Third we use the reduction algorithm described by Espitau and Joux in [EJ17]. It works on

the Gram matrix of the lattice instead of the basis matrix, and requires less precision. From a

practical perspective, their algorithm is able to ensure that the input precision suffices and

certifies that the output is an exact reduced basis. A precision analysis similar to the one

in Section 3.2 leads to the conclusion that the required precision is polynomial in the size

of the input. Indeed, we only have to replace the weight term ck by the norm of the ideal

L|∆K|(β,cb)k·A whose size is still polynomial in log |∆K|.

Algorithm 3 Deriving relations from BKZβ-reduction

Input: The factor base B, the block-size β, the bounds k and A for building ideals.
Output: The relations stored.

1: while not enough relations are found do
2: Choose at random k prime ideals p j1

, . . . ,p jk
in the factor base B

3: Choose at random k exponents e j1 , · · · ,e jk in {1, . . . , A}
4: Set a=∏

pei

i , for i ∈ {1, . . . , |B|}, with ei = 0 if i ∉ { j1, . . . , jk }
5: Find a BKZβ-reduced basis of a
6: Let xv denote the algebraic integer corresponding to the smallest vector of this basis
7: Set b as the unique ideal such that 〈xv 〉 =ab

8: if b is B-smooth then
9: Let e ′i such that b=∏

p
e ′

i

i

10: Store the relation 〈xv 〉 =∏
p

ei+e ′
i

i
11: end if
12: end while

Remark 4.2.3. Another improvement should be to test for smoothness all the elements whose

norms are below the bound given by the theoretic study of BKZ reduction. We know that the

first vector output by the BKZ reduction has norm below β
n−1

2(β−1) N (a)
1
n |∆K| 1

2n and this bound is

the one we used for the complexity analysis. However, if several small vectors have their norm

below this bound, then the rest of the algorithm works similarly for them, and we have saved

100

4.2. The relation collection

the cost of BKZ reductions. Hence, one may try the first small linear combinations between

vectors of the reduced basis output after reduction. This is only a practical improvement,

because asymptotically the number of BKZ reductions performed is not taken into account

(see Section 4.3).

The algorithm stops when enough relations are collected. At this point, it is necessary to

rely on a heuristic (as Heuristic 4.2.2) in order to guarantee the result. We propose a new one

that suffices for our purposes. We want the number of relations to be sufficient to generate

the whole set of relations described in Equation (2.5). We emphasize that there exist ideals

in the factor base that are more important: the ones whose norm is below the Bach bound

12(log |∆K|)2. Thus we consider that the matrix construction is completed when the number of

relations is larger than the number of ideals that occur and when all ideals of norm below the

Bach bound are involved in at least one relation. This last condition means that the submatrix

built from all the relations and only those ideals must have full-rank. In comparison with

Heuristic 4.2.2, our relation matrix may contain all-zero columns, which correspond to ideals

in the factor base that are not involved in any of the relations — by construction their norms

are necessarily larger than 12(log |∆K|)2.

Heuristic 4.2.4. There exists K negligible compared with |B| such that collecting K ·|B| relations

suffices to obtain a relation matrix that generates the whole lattice of relations.

4.2.3 Parameter settings

We consider as input a number field K ∈Dn0,d0,α,γ, with α≥ 1
2 . We stress that no information is

needed on the size of the defining polynomial — namely on γ — for this algorithm. Table 2

lists the optimal choices for B and β depending on α, with a transition at α= 3
4 (as already

mentioned by Biasse and Fieker). The parameter cb > 0 is going to be determined later, based

on the complexity analysis.

B β

1
2 ≤α≤ 3

4 Ł|∆K|
(1

2 ,cb
) (

log |∆K|
) 1

2

3
4 <α≤ 1 Ł|∆K|

(2α
3 ,cb

) (
log |∆K|

) 2α
3

Table 2: Optimal choices for the factor base and block-size depending on the extension degree.

101

Chapter 4. Refinements for complexities appearing in the literature for the general case

4.3 Complexity analyses

4.3.1 The caseα≤ 3
4

According to [BF14], when α≤ 3
4 , we know that our algorithm should run in time L|∆K|

(1
2 ,c1

)
.

We provide a detailed analysis to find an explicit expression for the constant c1. Let K be a

number field belonging to Dn0,d0,α,γ with α ∈ [1
2 , 3

4

]
, γ ≥ 1−α, d0 > 0 and n0 > 1. The factor

base B is fixed as the set of all prime ideals of norm below B = Ł|∆K|
(1

2 ,cb
)
, with cb > 0 to be

determined, and the block-size used in BKZ-reduction is β= (log |∆K|) 1
2 , according to Table 2.

First, we analyze the BKZ-reduction. Before looking at the output, we focus on the cost

of the reduction. By construction of ideal a — see Section 4.2.2 — its norm is polynomial

in L|∆K|
(1

2

)
. Theorem 1.1.10 states that BKZ-reduction runs in time Poly

(
n, logN (a)

) ·2O(β).

Because the norm of a is upper bounded, it only remains to bound the factor 2O(β). Denoting

by C the constant in the O, we obtain log2O(β) =C ·log2·(log |∆K|) 1
2 ≤ c(log |∆K|) 1

2 (loglog |∆K|) 1
2

asymptotically for any constant c > 0. Thus, we have shown that the runtime of the reduction

algorithm is below L|∆K|
(1

2 ,c
)

for every c > 0.

Second, we estimate the norm of the new ideal b built from the smallest vector returned

by the reduction algorithm. From Theorem 1.1.10 and Lemma 1.4.9, we know that the smallest

vector v of the BKZβ-reduced basis has a norm that satisfies ‖v‖ ≤ β
n−1

2(β−1) N (a)
1
n |∆K| 1

2n . As

N (xv) ≤ ‖v‖n (Lemma 1.4.2), we directly derive that the norm of b is upper bounded by

N (b) ≤β n(n−1)
2(β−1)

p|∆K| so that we deduce1

logN (b) ≤ 1

2
log |∆K|+

n2
0

4
(log |∆K|)2α− 1

2 (loglog |∆K|)1−2α

≤ 1

2
log |∆K|+ c(log |∆K|)2α− 1

2 (loglog |∆K|)1−2α+ 1
2 for all c > 0

≤ 1

2
log |∆K| (1+o(1))

=⇒ N (b) ≤ L|∆K|
(
1,

1

2

)
.

Third, we have to express the probability for b to be B-smooth. Assuming Heuristic 1.4.20

allows us to get a probability of

L|∆K|
(

1

2
,

1

4cb

)−1

.

Hence, on average, testing L|∆K|
(

1
2 , 1

4cb

)
ideals a leads to a single ideal b that is B-smooth and

thus to one relation. Assuming Heuristic 4.2.4, we need to find L|∆K|
(1

2 ,cb
)

relations. This

1Note that it is the same bound as in Equation (4.3). Our adjustments in the algorithm do not affect this bound.

102

4.3. Complexity analyses

requires testing

L|∆K|
(

1

2
,

1

4cb
+ cb

)
ideals for smoothness. Proposition 1.4.18 states that each test costs LL|∆K |

(
1
2

) (1
2

) = L|∆K|
(1

4

)
,

which is negligible. The reduction step, whose runtime is below L|∆K|
(1

2 ,c
)

for every c > 0,

is also negligible. Hence the global complexity of the relation collection step is given by the

number of ideals that we test, that is

L|∆K|
(

1

2
,

1

4cb
+ cb

)
.

Complexity for the class group computation. Now that we know the complexity of the

collection step, we look at the remaining parts of the computation to get the class group

structure, in order to determine the best cb . The relations are stored in a matrix of size

K · N × N , with N = |B| = L|∆K|
(1

2 ,cb
)
. The results regarding linear algebra, precision and

regulator computation are already studied by Biasse and Fieker and recalled in Section 2.3.3.

They show [BF14, Proposition 4.1] that the class group structure is inferred from the relation

matrix in time L|∆K|
(1

2 , (ω+1)cb
)
, where ω denotes the matrix multiplication exponent. This

result essentially relies on the HNF algorithm of Storjohann, recalled in Section 1.1.1.

The best choice for cb — i.e., the one that minimizes the complexity — follows from

balancing the runtimes of the collection and linear algebra phases. Thus the parameter cb > 0

should satisfy
1

4cb
+ cb = (ω+1)cb ⇐⇒ cb = 1

2
p
ω

.

Theorem 4.3.1. Assuming ERH and Heuristics 1.4.20 and 4.2.4, for every number field K that

belongs to Dn0,d0,α,γ with α ∈ [1
2 , 3

4

]
, our algorithm computes the class group structure and the

regulator with runtime

L|∆K|
(

1

2
,
ω+1

2
p
ω

)
.

Remark 4.3.2. We recall that ω denotes the exponent arising in the complexity of matrix

multiplication. The smallest known value is ω= 2.3728639 (see [Gal14]) which correspond

to the value 1.095 for the second constant. In practice, we use the Strassen algorithm [Str69]

where ω= log2 7 ≈ 2.807, leading to the second-constant value 1.136.

4.3.2 The caseα> 3
4

We follow the same path as in the previous case although some adjustments are made. We start

by mentioning that our final complexity is much better than the one announced in [BF14]: we

manage to replace the first constant 2
3 +ε by 2α

3 , which is always smaller, particularly when α

103

Chapter 4. Refinements for complexities appearing in the literature for the general case

is close to 3
4 . Furthermore, our second constant can be chosen arbitrarily small, which we

denote by L|∆K|
(2α

3 ,o(1)
)
.

This time, K belongs to Dn0,d0,α,γ with α ∈ (3
4 ,1

]
. The smoothness bound is fixed to

B = Ł|∆K|
(2α

3 ,cb
)
, cb > 0, and the block-size is β= (log |∆K|) 2α

3 . The bound on the norms N (a)

is polynomial in L|∆K|
(2α

3

)
, because of the parameters we used for constructing the ideals a. In

the same way as in Section 4.3.1, we show that the runtime of the reduction algorithm is below

L|∆K|
(2α

3 ,c
)

for every c > 0. The bound we derive for the norm of the new ideal built is

logN (b) ≤ 1

2
log |∆K|+

αn2
0

3
(log |∆K|)

4α
3 (loglog |∆K|)1−2α

≤ 1

2
log |∆K|+ c(log |∆K|)

4α
3 (loglog |∆K|)1− 4α

3 for all c > 0

≤ c(log |∆K|)
4α
3 (loglog |∆K|)1− 4α

3 for all c > 0.

Assuming Heuristic 1.4.20 and fixing any c > 0, if we take cb =
√

2αc
3 in the definition of B ,

then the probability for ideal b to be B-smooth is

L|∆K|
(

2α

3
,cb

)−1

.

Hence we conclude that testing L|∆K|
(2α

3 ,2cb
)

ideals suffices for the entire collection phase.

Again, the runtime L|∆K|
(
α
3

)
to perform a single smoothness test can be neglected.

Complexity for the class group computation. The global complexity of the class group

computation follows directly, because the runtime of the linear algebra step is obtained by

multiplying the second constant 2cb by a constant factor ω+1. As the constant cb could be

chosen arbitrarily small (but positive), we get the following theorem.

Theorem 4.3.3. Assuming ERH and Heuristics 1.4.20 and 4.2.4, for every number field K that

belongs to Dn0,d0,α,γ with α ∈ (3
4 ,1

]
, our algorithm computes the class group structure and the

regulator with runtime

L|∆K|
(

2α

3
,o(1)

)
.

We can now update Figure 1, by taking into account the results of Theorems 4.3.1 and 4.3.3.

This is presented in Figure 2.

4.4 Using HNF to get an even smaller complexity

We have a complexity between L|∆K|
(1

2

)
and L|∆K|

(2
3

)
that grows linearly for classes D with

α ≥ 3
4 . We want to reduce this worst case using Cheon’s trick, recalled in Section 1.1.3. As

104

4.4. Using HNF to get an even smaller complexity

depending on γ

L|∆K|
(
max(α, γ2)

)
L|∆K|

(
1
2 , ω−1

2
p
ω

)
L|∆K|

(2α
3 ,o(1)

)
[Ch.3]

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 2: Complexity obtained by our algorithms.

we have seen, it allows to output a shorter vector than in the general case. It relies on the

reduction of a sublattice that has smaller dimension than the full lattice, provided that the

input lattice has small discriminant.

As shown in this section, the complexity we are able to reach with this method is L|∆K|
(2α+1

5

)
.

It varies linearly between L|∆K|
(1

2

)
and L|∆K|

(3
5

)< L|∆K|
(2

3

)
. Hence, we fix the smoothness bound

B = Ł|∆K|
(2α+1

5 ,cb
)
, with cb > 0 to be determined. Also, the block-size used for BKZ-reductions

is set to β= (
log |∆K|

) 2α+1
5 . Overall, the path followed by this improved version of our algorithm

is essentially similar to the one described in Section 4.2.2. We only mention the adjustments

in the rest of the section.

First, we need to work with an integral lattice. Indeed as we begin by computing the HNF of

the lattice, it must be defined over Z. This is not a problem, as we already mentioned. We know

that the required precision is polynomial in the size of the entries. Practically, we approximate

the Gram matrix and use the implementation of [EJ17].

Second, to ensure that the hypothesis of Corollary 1.1.12 is satisfied, we need a bound on

the determinant of the input lattice. As we want a lattice with small determinant as input, we

first perform a rough reduction, using the classical BKZ algorithm — that is without Cheon’s

trick. Given an ideal a constructed as above as a power-product of elements in the factor base

and denoting by v the first vector of the BKZ-reduced basis, we define the ideal b as the unique

integral ideal that satisfies

〈xv 〉 =ab.

Thanks to the analysis presented in Section 4.3.2, we know that the norm of this ideal b is

upper bounded by L|∆K|
(8α−1

5

)
. We are in the case α> 3

4 , so that 8α−1
5 > 1. The determinant of

the lattice corresponding to the canonical embedding of b is N (b) ·p|∆K|. Hence we cannot

105

Chapter 4. Refinements for complexities appearing in the literature for the general case

expect that this quantity is smaller than L|∆K|(1), so we look for an ideal b that is B̃-smooth for

B̃ = Ł|∆K|(1,1). According to Proposition 1.4.18, each smoothness test costs

LL|∆K |(1)

(
1

2

)
= L|∆K|

(
1

2

)

and assuming Heuristic 1.4.20, testing L|∆K|
(8α−6

5

)
ideals suffices on average. In addition, the

number of ideals in every smooth decomposition is bounded by
(
log |∆K|

) 8α−6
5

(
1+o(1)

)
. The

complete runtime of this smoothness phase is in L|∆K|
(1

2

)
, as 0 < 8α−6

5 < 2
5 , which is outweighed

by the initial BKZβ reduction, whose cost is L|∆K|
(2α+1

5 ,o(1)
)
.

In the end, we have ideals b1, . . . ,bl whose canonical embeddings have determinant in

Ł|∆K|(1,1) < β
n2

2β = L|∆K|
(8α−1

5

)
and which satisfy

∏
bi = b. We notice that for the application

of Corollary 1.1.12, the lower bound Ł|∆K|(1,1) does not have to be reached. However, as the

quality of the output relies on this quantity — a factor logβdetL appears in the exponent —

we minimize it in order to get the best possible output.

For each ideal lattice σ(bi), we may apply Cheon’s trick combined with BKZ-reduction. As

for all i it is the case that log(detσ(bi)) =C log |∆K| for a constant C > 0, a small vector vi is

found with norm satisfying

log‖vi‖ ≤
 2C log |∆K|

(log |∆K|) 2α+1
5 log

(
(log |∆K|) 2α+1

5

)
 1

2

log
(
(log |∆K|)

2α+1
5

)(
1+o(1)

)

≤
√

2C (2α+1)

5

(
log |∆K|

) 2−α
5

(
loglog |∆K|

) 1
2
(
1+o(1)

)
≤ c

(
log |∆K|

) 2−α
5

(
loglog |∆K|

)1− 2−α
5 for every constant c > 0.

Again, as we already did for the earlier analyses, we bound the norm of the algebraic

integer xvi associated to the vector vi using Lemma 1.4.2. We obtain the inequality N
(〈

xvi

〉)≤
L|∆K|

(4α+2
5 ,c

)
for every c > 0. In addition, there exist integral ideals ci such that

〈
xvi

〉= bici

for all i . As the norm of bi is less than Ł|∆K|(1,1), we deduce that for each i , the norm of the

ideal ci satisfies

N (ci) ≤ L|∆K|
(

4α+2

5
,o(1)

)
.

Denoting by c the arbitrarily small non-negative constant that arises in the o(1), we follow

the same argument as in Section 4.3.2. By fixing cb =
√

(2α+1)c
5 , we deduce that the probability

for each ci to be B-smooth is

L|∆K|
(

2α+1

5
,cb

)−1

.

Hence we conclude that testing L|∆K|
(2α+1

5 ,2cb
)

ideals suffices to complete the relation

106

4.4. Using HNF to get an even smaller complexity

collection. Indeed, we have to test L|∆K|
(2α+1

5 ,cb
)

ideals for each ideal bi and given an ideal b

as input, the number of factors bi is polynomial. Finally, assuming Heuristic 4.2.4, we require

L|∆K|
(2α+1

5 ,cb
)

relations, which leads to the runtime stated above for the relation collection.

Complexity for the class group computation. Again, as in Section 4.3.2, the final complexity

for the class group computation follows directly and we get the following theorem.

Theorem 4.4.1. Assuming ERH and Heuristics 1.4.20 and 4.2.4, for every number field K that

belongs to Dn0,d0,α,γ with α ∈ (3
4 ,1

]
, our algorithm computes the class group structure and the

regulator with runtime

L|∆K|
(

2α+1

5
,o(1)

)
.

This new result allows to reduce the slope of the increasing line appearing in our complexity

figures. The worst complexity now becomes L|∆K|
(3

5 ,o(1)
)
. This result is displayed in Figure 3.

depending on γ

L|∆K|
(
max(α, γ2)

)
L|∆K|

(
1
2 , ω−1

2
p
ω

)
L|∆K|

(2α+1
5 ,o(1)

)
[Ch.3]

a

0

1
3

1
2

3
5

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 3: Complexity obtained by our algorithms and Cheon’s trick (α≤ 1
2 ⇒ 1−α≤ γ≤ 1).

107

Chapter 5

Reducing the complexity using good

defining polynomials

Contents

5.1 Motivation . 110

5.2 Deriving relations by sieving . 111

5.3 Complexity analyses . 114

5.3.1 The case of medium degree . 114

5.3.2 The small-degree case: when 2α< γ . 116

5.3.3 The large-degree case: when α> 2γ . 117

5.4 Conclusion on sieving strategy . 118

5.5 Application to Principal Ideal Problem . 119

5.5.1 The descent algorithm . 121

5.5.2 The large-degree case . 125

5.5.3 The small-degree case . 126

109

Chapter 5. Reducing the complexity using good defining polynomials

In this chapter, we focus on a conditional improvement based on the smallness of the

defining polynomial. Though ideal-reduction schemes enforce an L|∆K|
(1

2

)
complexity, the

solution of the discrete logarithm problem in finite fields in LQ
(1

3

)
suggests that we can reach

this value for class group computations too. This is the aim of the sieving strategy. We first

describe the algorithm and extend the results obtained by Biasse in [Bia14a]. Then we study

its complexity, compare it with the results of Chapter 4 and exhibit the number fields for which

this new strategy offers a smaller complexity than ideal reductions. In addition, we provide an

algorithm for solving the Principal Ideal Problem by using our class group computations.

5.1 Motivation

We have already seen that computing class groups and regulators in number fields is essen-

tially based on the index calculus method. Within this strategy, the part that determines the

complexity is the relation collection, because the linear-algebra step only leads to an additional

constant factor in the exponent — i.e., in the second constant in the L-notation. The relation

collection step, as its name suggests, consists in searching for many principal ideals that split

over the factor base:

〈x〉OK =∏
pei

i .

As described in Chapter 4, in the general case, without making any assumption on the

number fields, the ideal-reduction strategy performs best and leads to a complexity that is

at least L|∆K|
(1

2

)
. However, there exist conditional improvements when the number field is

defined by a good polynomial, that is a polynomial having small height. Indeed, in that case,

the q-descent strategy described by Biasse and Fieker in [BF14] and generalized in Chapter 3

allows a complexity between L|∆K|
(1

3

)
and L|∆K|

(1
2

)
for all number fields belonging to a class D

with α≤ 1
2 .

Our new idea that underlies this chapter is to generate the relations by testing a lot of small

principal ideals that are generated by algebraic integers of bounded degree and coefficients.

The norms of such elements depend on the two bounds used for the degree and on the

coefficients and the height of the defining polynomial — which is the reason why we want the

smallest possible defining polynomial. This idea was already used in the Number Field Sieve,

as recalled in Section 2.4.2. Enge, Gaudry, and Thomé [EG07, EGT11] extend this method to

low-degree curves for solving the discrete logarithm problem in the groups of such curves

in Lq g
(1

3

)
, where q is the cardinality of the base field and g the genus of the curve.

Then, Biasse in [Bia14a] applies the method in the context of class group computations.

110

5.2. Deriving relations by sieving

His result only addresses very specific number fields K defined by a polynomial T such that

[
K : Q

]≤O(log |∆K|)α and log H(T) ≤O(log |∆K|)1−α (5.1)

for an α in the open interval
(1

3 , 2
3

)
. In so doing, he was able to compute the class group in

time L|∆K|
(1

3

)
assuming ERH and under heuristics. We generalize here the sieving strategy to

all number fields, obtaining a complexity possibly as low as L|∆K|
(1

3

)
.

This method has also been used by Buchmann, Jacobson, Neis, Theobald, and Weber

in [BJN+99] for practical enhancements. Indeed, the sieving strategy definitely outperforms

ideal reduction in practice, especially for small-degree number fields.

The q-descent strategy explained in [BF14], where elements with small coefficients are

searched in lattices of smaller dimension, is, in a certain sense, another way to use these small

algebraic integers. However, our method appears easier to understand and its complexity

analysis is streamlined: we are able to provide explicitly the second constant in the L-notation,

which does not sound that simple for the q-descent. In addition, from a practical point of

view, as the q-descent only works in small degree
(
α≤ 1

2

)
, our algorithm should outperform

the q-descent, since it does not require iterations nor lattice-reductions.

5.2 Deriving relations by sieving

In the following, we make use of the classification presented in Chapter 4. For a fixed number

field K in a class Dn0,d0,α,γ, the value α ∈ [0,1] corresponds to the extension degree so that it

is precisely defined. For the second main parameter γ≥ 1−α, special care should be taken:

sometimes it costs too much to reduce the defining polynomial. This issue is addressed in

Section 5.4: given a number field defined by a polynomial, we study the optimal strategy

for computing the class group depending on the parameters. Is the polynomial reduction

necessary ? Is it better to use ideal-reduction or sieving ?

Remark 5.2.1. We use the terminology “sieving strategy” because it closely corresponds to the

way to — efficiently — implement it. Theoretically, our algorithm only consists in testing for

smoothness a huge arithmetic progression of algebraic integers until we have found sufficiently

many relations.

The description of the algorithm we are going to introduce is clear and the algorithm

is easily understandable. Difficulties arise when we need to fix the parameters such as the

smoothness bound for the factor base and the bounds that describe the sieving space in

order to minimize the complexity. To fix the notation, we consider a number field K = Q(θ) of

degree n and let T denote the defining polynomial of which θ is a root.

111

Chapter 5. Reducing the complexity using good defining polynomials

Let B > 0 be the smoothness bound that must be determined. We fix the factor base

B = {
p1, . . . ,pN

}
as the set of all prime ideals of OK whose norm is below B . From the Landau

Prime Ideal Theorem (Theorem 1.5.11), we know that its cardinality satisfies

N = |B| = B (1+o(1)) .

We describe the sieving space by fixing a bound t > 0 on the degree, together with a bound

S > 0 on the coefficients. Hence we use all the polynomials of degree at most t with coefficients

between −S and S. These are (2S +1)t+1 polynomials, but only half of them are of interest, as

algebraic integers x and −x generate the same ideal. Note that we may also avoid algebraic

integers built from a reducible polynomial in θ. Indeed, if x = x1 ·x2, then the exponents of a

relation produced by x equal the sums of the exponents of relations produced by x1 and x2.

Given an algebraic integer x =
t∑

i=0
aiθ

i and denoting by A the polynomial A(X) =
t∑

i=0
ai X i ,

Equations (1.12) and (1.11) imply that the norm of the principal ideal 〈x〉 is given by

N
(〈x〉)= Res(A,T) .

From the two bounds t and S, we derive an upper bound for the norm of the principal

ideal 〈x〉, using Lemma 1.4.4:

N
(〈x〉)≤p

t +1
np

n +1
t
H(T)t Sn . (5.2)

Assuming Heuristic 1.4.20, this bound on the norm offers a lower bound on the prob-

ability P of B-smoothness of any principal ideal 〈x〉 belonging to the sieving space. Then

the (2S +1)t+1 small ideals lead to (2S +1)t+1 ·P relations. Assuming Heuristic 4.2.4, collecting

N
(
1+o(1)

)
relations suffices to derive the class group. Therefore we want the following relation

to be satisfied by our choice of parameters:

(2S +1)t+1 ·P = N
(
1+o(1)

)
. (5.3)

Remark 5.2.2. Note that making use of our weaker Heuristic 4.2.4, introduced in Chapter 4,

is essential here. Indeed, the factor base may contain ideals of degree k > t , that cannot be

part of any relations derived from our settings. Because every ideal whose norm is below the

Bach bound has a degree smaller than log12+2loglog |∆K|, we know that sieving on degree-t

polynomials suffices for our purposes, which was not the case with the prior heuristic.

To evaluate the cost of the sieving phase, we need to know the number of ideals we test for

smoothness: it is (2S +1)t+1. We explain below that the cost of each smoothness test is always

112

5.2. Deriving relations by sieving

negligible. Then the overall cost of the sieving phase is given by (2S +1)t+1 (1+o(1)).

We have already stated that the lowest final complexity is obtained when a balance is

reached between the cost of the relation collection and the cost of the linear-algebra phase.

Thus we also want that

(2S +1)t+1 = Nω+1(1+o(1)
)
, (5.4)

because the linear algebra cost is in Nω+1 (see Section 4.3).

Before determining the parameters that minimize the complexity, we give an outline of

the strategy in Algorithm 4.

Algorithm 4 Deriving relations from small algebraic integers

Input: The factor base B, the degree bound t and the coefficient bound S.
Output: The relations stored.

1: for d from 1 to t do
2: for all (a0, . . . , ad) ∈ [−S, . . . ,S]d+1 do
3: Fix x =∑

aiθ
i and a= 〈x〉

4: Test the B-smoothness of a
5: if a is B-smooth then
6: Fix ei such that a=∏

pei

i
7: Store the relation 〈x〉 =∏

pei

i
8: end if
9: end for

10: end for

We describe in the subsequent sections how to set the parameters for the factor base and

the sieving space to achieve the best complexities. We fix n0 > 1, d0 > 0, α ∈ [0,1] and γ≥ 1−α
and let K be a number field that belongs to Dn0,d0,α,γ. We also assume that we know a good

defining polynomial T that satisfies

log H(T) ≤ d0(log |∆K|)γ(loglog |∆K|)1−γ.

Let θ be a primitive element of K that is a root of the defining polynomial T . As in the discrete

logarithm problem in finite fields, we need to distinguish several cases according to the relative

sizes of α and γ. However, the distinctions between the various cases are not as precise as they

are for the DLP: we consider small, medium and large degrees and give the corresponding

inequalities involving α and γ.

113

Chapter 5. Reducing the complexity using good defining polynomials

5.3 Complexity analyses

5.3.1 The case of medium degree

We begin by the medium case, which we define by α and γ being of the same magnitude. This

includes α ≈ γ ≈ 1
2 , but covers a much wider range as follows from the analysis below. As

already discussed at the beginning of Section 4.1, the size of the defining polynomial plays a

role in the complexity: we only have the inequality γ≥ 1−α, so that we have no choice but to

keep using both α and γ.

Given that we hope to find an algorithm with runtime L|∆K|
(1

3

)
and given that γ ≥ 1−α

(thus α+γ≥ 1), we simply conjecture the existence of an algorithm with runtime L|∆K|
(α+γ

3

)
and fix the size of the factor base B as the set of prime ideals of norm at most

B = Ł|∆K|
(α+γ

3
,cb

)
,

with cb > 0 to be determined. Thanks to Theorem 1.5.11, we know that N = |B| = L|∆K|
(α+γ

3 ,cb
)
.

The sieving space is chosen to consist in all algebraic integers x = A(θ), built as polynomials

in θ, that satisfy

deg A ≤ t = ct

(
log |∆K|

loglog |∆K|
) 2

3 (α+γ)−γ
and H(A) ≤ S = Ł|∆K|

(
2

3
(α+γ)−α,cs

)
. (5.5)

In particular, log H(A) ≤ cs(log |∆K|) 2
3 (α+γ)−α(loglog |∆K|)1−(

2
3 (α+γ)−α)

. Of course, these two

quantities are only well defined for 2
3 (α+γ)−γ ≥ 0 and 2

3 (α+γ)−α ≥ 0, which defines the

bounds of the medium-degree case.

According to Equation (5.2), this choice of parameters enables to bound the norm of every

principal ideal 〈x〉 in the sieving space by

N
(〈x〉)≤ L|∆K|

(
2

3
(α+γ),n0cs +d0ct

)
. (5.6)

We deduce from Heuristic 1.4.20 that a principal ideal generated by such an x is B-smooth

with probability

P ≥ L|∆K|
(
α+γ

3
,

(α+γ)(n0cs +d0ct)

3cb

)−1

.

The size of the sieving space is given by (2S +1)t+1 = Ł|∆K|
(α+γ

3 ,csct
)
. As usual, this esti-

mation allows us to estimate the number of relations found by combining the two previous

114

5.3. Complexity analyses

results: the number of collected relations is expected to be

(2S +1)t+1 ·P = L|∆K|
(
α+γ

3
,csct − (α+γ)(n0cs +d0ct)

3cb

)
.

With N = L|∆K|
(α+γ

3 ,cb
)

and the assumption of Heuristic 4.2.4 (see Equation (5.3)), we

obtain

csct − (α+γ)(n0cs +d0ct)

3cb
= cb .

Another equation between the various constants stems from the balance between the

relation collection and the linear algebra, as stated by Equation (5.4). It boils down to

csct = (ω+1)cb .

From these two equations, we easily express ct in the other constants and obtain a degree-2

equation in cb , depending on cs : 3ωcsc2
b −d0(α+γ)(ω+1)cb −n0(α+γ)c2

s = 0. This expression

allows us to infer the shape of cb , which is going to give us the final complexity, depending

on cs :

cb =
d0(α+γ)(ω+1)+

√
d 2

0 (α+γ)2(ω+1)2 +12n0(α+γ)ωc3
s

6ωcs
.

It only remains to minimize this quantity as a function of cs . It follows from a straight

analysis that the minimum is achieved for cs satisfying c3
s = 2d 2

0 (α+γ)(ω+1)2

3n0ω
, which leads to

cb =
(

4n0d0(α+γ)2(ω+1)

9ω2

) 1
3

.

Consequently, the runtime of our algorithm for computing the class group structure and

an approximation of the regulator is

L|∆K|

(
α+γ

3
,

(
4n0d0(α+γ)2(ω+1)4

9ω2

) 1
3
)

.

Remark 5.3.1. The first constant may be as low as 1
3 if γ reaches the lower bound 1 −α,

i.e., α+γ= 1.

We also mention that in this case, our second constant is better than the one found by

Biasse in [Bia14a].

This analysis however only holds when the two quantities 2
3 (α+γ)−γ and 2

3 (α+γ)−α are

non-negative. These conditions offer the limits of our analysis and can be rewritten as

1

3

(
α+γ)≤α≤ 2

3

(
α+γ) ⇐⇒ γ

2
≤α≤ 2γ.

115

Chapter 5. Reducing the complexity using good defining polynomials

Therefore, it remains to treat the two complementary cases, when either the size of the defining-

polynomial height or the extension degree prevails.

5.3.2 The small-degree case: when 2α< γ

The first extreme case we study is when the size of the defining-polynomial height outweighs

the extension degree. It corresponds to the left part of the diagrams displayed in Chapter 4,

where the q-descent strategy works. In these cases, the extension degree satisfies

α< γ

2
⇐⇒ α< 1

3

(
α+γ)

.

We are able to reach a final complexity in L|∆K|
(γ

2

)
for the relation collection. As α is

relatively small — below γ
2 — we know that the defining-polynomial reduction algorithm

presented in Chapter 3 runs in time L|∆K| (α), which is strictly less than L|∆K|
(γ

2

)
. Hence

this reduction is always negligible compared with the relation collection, so that it can be

considered as a precomputation. According to Corollary 3.1.3 and the discussion at the end of

Section 3.1, we can also assume γ≤ 1.

We fix the size of the factor base B by considering all the prime ideals having norm below

B = Ł|∆K|
(γ

2
,cb

)
,

and we have from Landau’s theorem that N = |B| = L|∆K|
(γ

2 ,cb
)
. The sieving space is con-

structed as before, using all polynomials A that satisfy

deg A ≤ t = ct and H(A) ≤ S = Ł|∆K|
(γ

2
,cs

)
. (5.7)

These adjustments in the definition are motivated by the desire to minimize the norm size.

As the height of the defining polynomial is large, we bound the degree of the algebraic integers

to guarantee that the norm stays small.

According to Equation (5.2), this choice of parameters enables to bound the norm of every

principal ideal 〈x〉 in the sieving space by

N
(〈x〉)≤ L|∆K|

(
γ,d0ct

)
. (5.8)

Assuming Heuristic 1.4.20 allows us to have the following inequality satisfied by the proba-

bility for a principal ideal generated by such an x to be B-smooth:

P ≥ L|∆K|
(
γ

2
,

d0γct

2cb

)−1

.

116

5.3. Complexity analyses

As the sieving-space cardinality is (2S +1)t+1 = Ł|∆K|
(γ

2 ,cs(ct +1)
)
, we obtain the number

of collected relations as before and Equation (5.3) results in cs(ct +1)− d0γct

2cb
= cb . Similarly

Equation (5.4) leads to cs(ct +1) = (ω+1)cb . From an identical approach as in the previous

section, we find the optimal choices for the constants and conclude that the runtime of our

algorithm is

L|∆K|

(
γ

2
,

(
d0γ(ω+1)2ct

2ω

) 1
2
)

.

Remark 5.3.2. The first constant is always between 1
3 and 1

2 : the upper bound is a consequence

of the precomputation made for finding the minimal-height defining polynomial while the

lower one comes from γ> 2
3 (α+γ) ≥ 2

3 . In the second constant, the factor ct appears so that

the complexity depends on the degree of the polynomials we use for sieving. The minimal

value is obtained for ct = 1, for a runtime in L|∆K|
(
γ
2 ,

(
d0γ(ω+1)2

2ω

) 1
2

)
.

Remark 5.3.3. A possible alternative for the sieving may be to enlarge the sieving space by

allowing the coefficients to be larger — always below S′ = Ł|∆K|
(
γ−α,o(1)

)
— and to consider

only a random subset of size L|∆K|
(γ

2 ,cs(ct +1)
)

of the sieving space. Using the bound S′ does

not affect Equation (5.8) and the complexity is preserved.

5.3.3 The large-degree case: when α> 2γ

In this last case, the extension degree outweighs the size of the defining-polynomial height. It

corresponds to the right part of the diagrams displayed in Chapter 4. Here we have to work

with the input defining polynomial because finding the minimal one costs too much. As the

extension degree is large, we opt for sieving polynomials that have small coefficients and large

degrees.

We fix the size of the factor base B by considering all the prime ideals having norm below

B = Ł|∆K|
(α

2
,cb

)
,

and we have from Landau’s theorem that N = |B| = L|∆K|
(
α
2 ,cb

)
. The sieving space is con-

structed using all polynomials A that satisfy

deg A ≤ t = ct

(
log |∆K|

loglog |∆K|
) α

2

and H(A) ≤ S = Ł|∆K| (0,cs) = (log |∆K|)cs . (5.9)

According to Equation (5.2), this choice of parameters enables to bound the norm of every

principal ideal 〈x〉 in the sieving space by

N
(〈x〉)≤ L|∆K|

(
α,n0

(
cs + α

4

))
. (5.10)

117

Chapter 5. Reducing the complexity using good defining polynomials

We deduce from Equation (5.10) and Heuristic 1.4.20 that the probability for a principal

ideal generated by such an x to be B-smooth satisfies

P ≥ L|∆K|
(
α

2
,

n0α(α+4cs)

8cb

)−1

.

Finally, an identical analysis enables to find the optimal choice for the constants. The final

runtime for our class group algorithm based on sieving strategy satisfies

L|∆K|

(
α

2
,

(
n0α(α+4cs)(ω+1)2

8ω

) 1
2
)

.

Remark 5.3.4. The first constant is always between 1
3 and 1

2 because α> 2
3 (α+γ) ≥ 2

3 . In the

second constant, the constant cs appears which can be chosen arbitrarily small. The minimal

runtime thus becomes L|∆K|
(
α
2 ,

(
n0α

2(ω+1)2

8ω

) 1
2

)
.

Remark 5.3.5. Again, it is possible to enlarge the sieving space by allowing the degree to be

larger — always below t ′ = ct

(
log |∆K|

loglog |∆K|
)α−γ−ε

for ε> 0 arbitrarily small — and to consider only

a random subset of the sieving space of size L|∆K|
(
α
2 ,csct

)
. Using the bound t ′ does not affect

Equation (5.10) and the complexity is preserved.

5.4 Conclusion on sieving strategy

The complexity analyses we have derived in the previous sections assume that we know a

small defining polynomial T , that is a witness to the fact that K belongs to the class D. We

recall that the classes D satisfy

Dn0,dF ,α,γF ⊂ Dn0,d0,α,γ0 ,

for n0,d0,dF > 0, 0 ≤α≤ 1 and 1−α≤ γF < γ0. To identify the best strategy depending on the

inputs, we consider a number field K defined by a polynomial T such that

1

n0

(
log |∆K|

loglog |∆K|
)α

≤ degT ≤ n0

(
log |∆K|

loglog |∆K|
)α

and log H(T) ≤ d0(log |∆K|)γ0 (loglog |∆K|)1−γ0 .

It is easily verified that K belongs to Dn0,d0,α,γ0 . In addition we introduce γF and dF so

that γF is the minimal γ such that K ∈Dn0,dF ,α,γ. Thus we consider two different classes to

which K belongs, namely Dn0,dF ,α,γF and Dn0,d0,α,γ0 ; note that

K ∈Dn0,dF ,α,γF ⊂Dn0,d0,α,γ0 .

118

5.5. Application to Principal Ideal Problem

Given the number field K defined by the polynomial T as inputs, we study the different

options for computing the class group and give the optimal strategy. Let us first look at the

medium-degree case, where γ0

2 ≤α≤ 2γ0. Necessarily, we have α≥ α+γ0

3 ≥ 1
3 .

• When α≤ 1
2 , as γ0 ≤ 2α, we have α+γ0

3 ≤ 1
2 and sieving is the best strategy.

• When 1
2 < α ≤ 3

4 , the sieving strategy remains optimal as long as α+γ0

3 ≤ 1
2 . Indeed,

beyond this bound, the ideal-reduction strategy becomes less costly and should be

preferred. This happens as soon as γ0 ≥ 1.

• Similarly, for 3
4 < α ≤ 1, the sieving strategy remains optimal as long as α+γ0

3 ≤ 2α+1
5 .

Above this bound, the ideal-reduction strategy becomes the best option. This happens

as soon as γ0 ≥ 4
5 .

The large-degree case is easier to deal with. Provided that α > 2γ0, we know that the

sieving strategy results in an algorithm with runtime L|∆K|
(
α
2

)
, between L|∆K|

(1
3

)
and L|∆K|

(1
2

)
,

as α> 2γ0 implies that α≥ 2(α+γ0)
3 ≥ 2

3 . This is always the best option.

The small-degree case is when defining-polynomial reduction plays a role. Indeed, we

know that its cost is L|∆K|(α) while the sieving strategy runs in time L|∆K|
(γ

2

)
. Because α< γ0

2 ,

we can always perform this reduction as a precomputation. It allows to find the smallest-height

defining polynomial and so the minimal γF . This reduction has two outcomes:

• If γF

2 <α, then the sieving strategy has a complexity in L|∆K|
(α+γF

3

)
, which is negligible

compared to the cost of the reduction, so that the final runtime is L|∆K| (α). This can only

happens when α> 1
3 , since α+γF ≥ 1.

• If γF

2 > α, then the sieving strategy has a complexity that outweighs the cost of the

reduction, so that the final runtime is L|∆K|
(γF

2

)
. This value is between L|∆K|

(1
3

)
and

L|∆K|
(1

2

)
, as the reduction algorithm returns a polynomial such that γF ≤ 1 — this is

a direct consequence of Corollary 3.1.3, already stated in Chapter 3 — and because

γF > 2α implies that γF ≥ 2(α+γ0)
3 ≥ 2

3 . This is the only option when α< 1
3 .

The results of this analysis are summarized in Table 3. We also give a new diagram for the

complexities in Figure 4.

5.5 Application to Principal Ideal Problem

In addition to the step forward for class group computations, our results allow us to improve

the resolution of another problem: the Principal Ideal Problem (PIP). It consists in finding a

generator of an ideal, assuming it is principal. The Short Principal Ideal Problem (SPIP) follows

119

Chapter 5. Reducing the complexity using good defining polynomials

Cond. on α Cond. on γ Strategy Complexity

α≤ 1
2

γ0 ≤ 2α Sieving (MD) L|∆K|
(α+γ0

3

)
2α< γF ≤ γ0 Pol. Red. & Sieving (SD) L|∆K|

(γF

2

)
γF < 2α< γ0 Pol. Red. & Sieving (SD) L|∆K| (α)

α> 1
2

2γ0 ≤α Sieving (LD) L|∆K|
(
α
2

)
α+γ0

3 ≤ max
(1

2 , 2α+1
5

)
Sieving (MD) L|∆K|

(α+γ0

3

)
α+γ0

3 > max
(1

2 , 2α+1
5

)
Ideal Reduction L|∆K|

(
max

(1
2 , 2α+1

5

))
Table 3: Choice of the strategy depending on the input parameters.

L|∆K|
(
max

(
α, γF

2

))
L|∆K|

(α+γ0

3

)
L|∆K|

(
α
2

)

a

0

1
3

1
2

3
5

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 4: Complexity obtained with our sieving strategy.

from the PIP by adding the assumption that there exists a small generator. The SPIP is the base

of several Fully Homomorphic Encryption schemes inspired by the work of Gentry [Gen09]

such as the FHE scheme presented by Smart and Vercauteren at PKC 2010 [SV10] and the

multilinear map scheme presented by Garg, Gentry, and Halevi at EuroCrypt in 2013 [GGH13].

Solving the SPIP is a two-stage process that consists of first solving the underlying PIP (on

which we focus here), if successful followed by attempts to reduce the generator found to a

short one (this issue is postponed to Chapter 6). Finding a generator of a principal ideal, and

even testing the principality of an ideal, are difficult problems in algorithmic number theory,

as described in detail in [Coh93, Chapter 4] and [Thi95, Section 7].

The general strategy is — again — similar to the one used for the Discrete Logarithm

Problem in finite fields. Indeed, for finding the logarithm of an element, two steps are distin-

guished: first, we find the logarithms of many small elements; second, we express our target

element using these small elements and recover its logarithm. It is the same here with our

120

5.5. Application to Principal Ideal Problem

ideal a, assumed to be principal. First, we compute the matrix of relations as for class group

computations, keeping track of the small elements we have sieved with. Second, we find an

ideal b that is in the same class as a and that splits over the factor base. Then, linear algebra

allows us to recover a generator of b thanks to the relation matrix and finally, we can solve

the PIP.

5.5.1 The descent algorithm

We first briefly outline the algorithm without fixing the parameters. Indeed, as for class group

computations, the optimal parameters choices are derived from the complexity analyses,

depending on the number-field exponents α and γ. In order to bootstrap the descent, we

start with a classical BKZ-reduction to obtain an ideal of reasonable norm. Indeed, as the

input ideal a is fixed — the one for which we want a generator — it can have an arbitrarily

large norm. All the ideal reductions are performed on the lattice built from the coefficient

embedding ς(a). The block-size is fixed so that the complexity of the reduction is strictly

below the overall complexity of the algorithm, as we have done in Chapter 4. Then the descent

consists in a succession of ideal reductions and smoothness tests so that the norms of all ideals

involved decrease progressively until they reach the lower bound, given by the smoothness

bound used in the class group computations.

We now fix the parameters for a degree-n number field K that belongs to a class Dn0,d0,α,γ

with γ
2 ≤α≤ 2γ. We know that the final complexity is given by L|∆K|

(α+γ
3

)
, assuming this first

constant is small enough — below 1
2 . Let us write k = α+γ

3 for the sake of simplicity. A pattern

of the descent is displayed in Figure 5.

The initial reduction. Let a be the ideal, assumed principal, for which we search for a

generator. We may also assume that it is prime, otherwise it suffices to factor it and to work

with the prime ideals — that have smaller norms. We can always represent this ideal with its

HNF. We obtain an n×n matrix whose largest coefficient is at most the norm of the ideal N (a).

The first reduction consists in performing a BKZ-reduction on the n-dimensional lat-

tice ς(a) with block-size β = (log |∆K|)k . It permits to exhibit a small vector v that satisfies

‖v‖ ≤β n−1
2(β−1) N (a)

1
n , as detς(a) =N (a) (see Theorem 1.1.10). The cost of this lattice reduction

is L|∆K|
(
k,o(1)

)
, provided that the norm N (a) satisfies logN (a) ≤ L|∆K| (k −ε) for ε > 0, as

specified in Section 4.3. Therefore, the principal ideal generated by the algebraic integer x0 ∈a
corresponding to the vector v ∈ ς(a) has its norm bounded by (n +1)n ·H(T)n ·β n(n−1)

2(β−1) N (a)

(see Corollary 1.4.7). Finally, denoting by a(0) the unique integral ideal such that 〈x0〉 =a ·a(0),

121

Chapter 5. Reducing the complexity using good defining polynomials

we obtain the following upper bound:

N
(
a(0))≤ L|∆K|

(
α+γ,n0d0

)= L|∆K| (3k,n0d0) .

As we have mentioned, we alternate lattice reductions and smoothness tests. For keep-

ing a complexity in L|∆K|(k), we are going to test the ideal a(0) for L|∆K|(2k, s0)-smoothness,

for s0 > 0 to be determined. According to Proposition 1.4.18, the cost for a single test is

L|∆K|
(
k,

√
2ks0

)
, while the assumption of Heuristic 1.4.20 asserts that the probability for a(0) to

be L|∆K|(2k, s0)-smooth is lower bounded by L|∆K|
(
k, kn0d0

s0

)−1
. First, this implies that we need

to test on average L|∆K| (k) ideals before finding one that is smooth. We then make use of the

randomization process used by Biasse and Fieker in [BF14] and recalled in Section 4.2.1. It

consists in considering randomized ideals that are products of a with random power-products

of small prime ideals — the ones in the factor base. Clearly, it offers sufficiently many choices

for testing L|∆K| (k) ideals. Second, the total runtime for the smoothness tests is given by

L|∆K|
(
k,

kn0d0

s0
+

√
2ks0

)
,

which is minimal for s3
0 = 2k(n0d0)2, leading to a complexity of

L|∆K|

(
k,

(
9

2
k2n0d0

) 1
3

)
.

Subsequent steps. At the beginning of the i -th step, we have an ideal a(i) whose norm is

upper bounded by L|∆K|
(
k

(
1+ 1

2i

)
, si

)
. This time, we are going to perform the lattice reduction

over a sublattice of ς
(
a(i)

)
of dimension d = cd

(
log |∆K|

loglog |∆K|
)δ

, for 0 ≤ δ ≤ α and cd > 0 to be

determined. The reason to look at a sublattice is that it allows to reduce the norms of the ideals

that are involved, which is exactly what we want for the descent.

The BKZ-reduction on this sublattice provides an algebraic integer xi ∈ a(i) and so an

integral ideal a(i+1) such that 〈xi 〉 =a(i) ·a(i+1). The upper bound we get on the norm of a(i+1),

according to Theorem 1.1.10 and Lemma 1.4.4, is

L|∆K|(α) ·L|∆K|
(
γ+δ,d0cd

) ·L|∆K|(α+δ−k) ·L|∆K|
(
α+k

(
1+ 1

2i

)
−δ,

n0si

cd

)
.

This quantity is minimal when γ+δ=α+k
(
1+ 1

2i

)
−δ⇐⇒ δ=α−k

(
1+ 1

2i+1

)
and c2

d = n0si
d0

,

which results in the following upper bound for the norm:

L|∆K|
(
k

(
2+ 1

2i+1

)
,2

√
n0d0si

)
.

122

5.5. Application to Principal Ideal Problem

Again, we want to test this ideal for smoothness and we fix the smoothness bound

to L|∆K|
(
k

(
1+ 1

2i+1

)
, si+1

)
. This time, the cost for a single ECM is negligible, as given by

L|∆K|
(

k
2

(
1+ 1

2i+1

))
. The total cost is then inferred from the number of ideals we have to test. Us-

ing the same process as for the initial reduction and assuming Heuristic 1.4.20, this number is

L|∆K|

(
k,

2k
√

n0d0si

si+1

)
.

The final step. We fix l =
⌈

log2

(
1
k log

(
log |∆K|

loglog |∆K|
))⌉

. Thus, at step l , we have ideals that are

L|∆K|
(
k

(
1+ 1

2l

)
, sl

)
-smooth. However, by definition of the L-notation,

logL|∆K|
(
k

(
1+ 1

2l

)
, sl

)
≤ sl (log |∆K|)k (loglog |∆K|)1−k

(
log |∆K|

loglog |∆K|
)1/log

(
log |∆K |

loglog |∆K |
)

︸ ︷︷ ︸
= e=exp(1)

(
1+o(1)

)
,

so that we have the inequality L|∆K|
(
k

(
1+ 1

2l

)
, sl

)
≤ L|∆K| (k,e · sl).

Remark 5.5.1. More precisely, we can go further and get rid of the constant e. Indeed, for every

ε > 0, if Cε denotes the smallest integer larger than log(1+ε)−1, then at step Cε · l , we only

consider ideals that are L|∆K| (k, (1+ε)sl)-smooth.

In the end, we want all the ideals involved to have a norm below the smoothness bound

we have used for class group computation, i.e.,

e · sl ≤ cb =
(

4k2n0d0(ω+1)

ω2

) 1
3

. (5.11)

Our approach is to balance the cost of all steps, except the initial one: each one costs

L|∆K|
(
k,

(
4k2n0d0 y

) 1
3

)
, for a constant y > 0 to be determined. Hence we have, for all i ,

2k
√

n0d0si

si+1
= 4k2n0d0 y ⇐⇒ si+1 =p

si ·
(

4k2n0d0

y2

) 1
6

.

We deduce that

sl = s
1

2l

0 ·
(

4k2n0d0

y2

) 1
6 ·

(
1+ 1

2+···+ 1
2l−1

)

=
(

s0 y
2
3

(4k2n0d0)
1
3

) 1
2l (

4k2n0d0

y2

) 1
3

=
(

4k2n0d0

y2

) 1
3 (

1+o(1)
)
.

123

Chapter 5. Reducing the complexity using good defining polynomials

Then, Equation (5.11) can be rewritten as e
(

4k2n0d0

y2

) 1
3 ≤

(
4k2n0d0(ω+1)

ω2

) 1
3

, i.e., y2 ≥ e3ω2

ω+1 . As

the number of steps is polynomial in log |∆K|, the total cost of the l steps of the descent

is L|∆K|
(
k,

(
4k2n0d0 y

) 1
3

)
, with y2 = e3ω2

ω+1 . It outweighs the initial reduction, because 4y > 9
2

for ω≥ 2.

Remark 5.5.2. We need to bound the numbers of ideals involved in order to be sure of our final

complexity. At each step, we spend time L|∆K|(k) for the smoothness tests. It follows that the

number of ideals in the decomposition is bounded by O

((
log |∆K|

loglog |∆K|
)k

)
. During the descent,

the number of ideals is then multiplied by this factor at each step. Finally, the number of ideals

at step l is quasi-polynomial O

((
log |∆K|

loglog |∆K|
)k

)l

. In Figure 5, indices have been added to the

ideals to illustrate this.

At this point, the only remaining part consists in finding out how to decompose these

ideals over the principal ideals collected for building the relation matrix. This is done by

solving a linear system M X = Y , where M is the relation matrix and Y the valuations vector

of the smooth ideal. To be sure that this system has a solution, we need to have a relation

matrix of almost-full rank. By this unusual term, we only mean that we want all ideals in the

factor base involved in the relations, except the ones whose degree is larger than the bound ct .

Indeed, they do not appear in a relation because of the parameters we use, but we do not care

as they do not arise either in the descent process — this is a consequence of the dimensions of

the sublattices that we use. The runtime of this part is L|∆K| (k,2cb) as the matrix of relations is

already in HNF.

Finally, we also have y < (ω+1)4

ω2 , which means that the complexity for solving the Principal

Ideal Problem is the same as the complexity obtained for class group computation. However,

we have analyzed the runtime of the descent for the case when the matrix of relations is known.

Remark 5.5.3. Two improvements can be made to reduce the complexity. First, as explained in

Remark 5.5.1, the constant e can be replaced by any other constant larger than and arbitrarily

close to 1. Second, if we are only interested in solving the PIP, then the computation of the

regulator and the class group structure are useless. Hence, the linear-algebra step boils down

to solving a linear system over Z, which can be performed in time L|∆K| (k,ωcb) using a Las-

Vegas algorithm described by Storjohann in [Sto05]. Then, we can adjust all our parameters

replacing ω+1 by ω. Finally, these enhancements lead to a final complexity for the PIP of

L|∆K|

(
k,

(
4k2n0d0ω

4

(ω−1)2

) 1
3
)

.

Remark 5.5.4. The descent strategy for solving the Principal Ideal Problem is also treated in

detail in Chapter 6. It is applied in the context of the cryptanalysis of a Fully Homomorphic

124

5.5. Application to Principal Ideal Problem

Encryption Scheme over prime-power cyclotomic fields. The interested reader can find more

details there.

a The input ideal

L a ·∏i p
ei

ji

x0 a(0) a(0) =∏
j a

(0)
j

L|∆K|(k)× ς

ς−1

Randomization

Lattice reduction

a(0)
a1

N
(
a(0)

a1

)
≤ L|∆K|(2k)

L a(0)
a1

·∏i p
ei

ji

x1 a(1)
a1

a(1)
a1

=∏
j a

(1)
a1, j

L|∆K|(k)× ς

ς−1

Randomization

Lattice reduction

a(l−1)
a1,...,al

L a(l−1)
a1,...,al

·∏i p
ei

ji

xl a(l)
a1,...,al

a(l)
a1,...,al

L|∆K|(k)-smooth

L|∆K|(k)× ς

ς−1

Randomization

Lattice reduction

l =
⌈

log2

(
1
k log

(
log |∆K|

loglog |∆K|
))⌉

steps

Figure 5: The descent algorithm for the medium-degree case.

5.5.2 The large-degree case

For the present large-degree case, the approach is similar to the previous case, the only

difference being the parameters choice. This time,α> 2γ and we denote by k the first constant

of the class group complexity, i.e., k = α
2 .

We perform the first reduction using a block-sizeβ= cβ(log |∆K|)k . It still costs L|∆K|
(
k,o(1)

)
and gives rise to an algebraic integer x0 and an integral ideal a(0) such that 〈x0〉 = a ·a(0).

125

Chapter 5. Reducing the complexity using good defining polynomials

According to Corollary 1.4.7, the norm of a(0) satisfies

N
(
a(0))≤ L|∆K|

(
2α−k,

n2
0

2cβ

)
= L|∆K|

(
3k,

n2
0

2cβ

)
.

We make use of the same randomization process as in the medium-case and obtain a

L|∆K| (2k, s0)-smooth ideal in time L|∆K|
(
k,

(
9k2n2

0
4cβ

) 1
3
)

, for s3
0 =

kn4
0

2c2
β

chosen to minimize this cost.

The subsequent steps begin with an ideal of norm less than L|∆K|
(
k

(
1+ 1

2i

)
, si

)
. Then, by

fixing δ= k
(
1+ 1

2i+1

)
, we obtain an ideal a(i+1) such that is norm is upper-bounded by

L|∆K|
(
k

(
2+ 1

2i+1

)
,

n0si

cd

)
.

so that, assuming Heuristic 1.4.20, we can find an ideal that is L|∆K|
(
k

(
1+ 1

2i+1

)
, si+1

)
-smooth

in time

L|∆K|
(
k,

kn0si

cd si+1

)
.

In the same way, setting l =
⌈

log2

(
1
k log

(
log |∆K|

loglog |∆K|
))⌉

implies that after step l , the ideals

involved are L|∆K|(k,e · sl)-smooth; here we want e · sl to be smaller than cb .

Let y > 0 be a constant such that, at each step, the runtime of the smoothness tests is below

L|∆K|
(
k, y

)
. That means that for all i , it is the case that kn0si

cd si+1
≤ y . Then, by fixing cd = kn0

y ·
(

es0
cb

) 1
l

and si+1 = si ·
(

cb
es0

) 1
l
, the previous equation is satisfied, resulting in

sl = s0 ·
(

cb

es0

)
⇐⇒ e · sl = cb .

As y > 0 can be chosen arbitrarily small, each step has a runtime in L|∆K|
(
k,o(1)

)
and the

initial-reduction cost can also be chosen that small, for cβ sufficiently large. The remaining

part consisting in solving the linear system works in the same way as for the previous case and

we can conclude that the complexity of our algorithm for solving the PIP is the same as the

complexity of the class group computation. Again, Remark 5.5.3 holds so that we can reduce

the complexity to

L|∆K|

(
k,

(
k2n0ω

2

2(ω−1)

) 1
2
)

.

5.5.3 The small-degree case

Again, we only give a brief summary of the descent. Here we have 2α< γ and k denotes γ
2 .

126

5.5. Application to Principal Ideal Problem

The initial BKZ-reduction provides an ideal of norm bounded by L|∆K|
(
α+γ,n0d0

)
in time

L|∆K|
(
k,o(1)

)
. We can find an ideal that is L|∆K| (k +α, s0)-smooth in time L|∆K|

(
k, kn0d0

s0

)
as the

cost of a single application of ECM is negligible — because k+α
2 < k.

Then, every subsequent step takes as input an ideal of norm less than L|∆K|
(
k + α

2i , si

)
.

Then, looking for a small vector in the sublattice of dimension d = cd

(
log |∆K|

loglog |∆K|
) α

2i+1
leads

to a new ideal of norm upper bounded by L|∆K|
(
2k + α

2i+1 ,d0cd

)
. Again we expect, assuming

Heuristic 1.4.20, to find one that is L|∆K|
(
k + α

2i+1 , si+1

)
-smooth in time L|∆K|

(
k, kd0cd

si+1

)
.

At final step l =
⌈

log2

(
1
α log

(
log |∆K|

loglog |∆K|
))⌉

, we have ideals that are L|∆K|(k,e · sl)-smooth and

we want e · sl to be smaller than cb =
(

kd0ct
ω

) 1
2

. Note that, at this point, d = cd e
(
1+o(1)

)
for the

same reason as above. Hence cd may be as small as 1
e and the cost of the final smoothness test

is lower-bounded by

L|∆K|
(
k,

kd0

e · sl

)
≥ L|∆K|

(
k,

kd0

cb

)
= L|∆K|

(
k,

(
kd0ω

ct

) 1
2

)
.

This last smoothness test dominates the overall complexity of the descent phase, as we

can always choose cd and xi such that the runtimes of the other smoothness tests become

arbitrarily small. In addition, this part is dominated by the class group computation: indeed,(
kd0ω

ct

) 1
2 ≤ (ω+ 1)

(
kd0ct
ω

) 1
2

because ct ≥ 1 > w
w+1 . Again, we can improve this algorithm as

explained in Remark 5.5.3 and finally get a complexity of

L|∆K|

(
k,

(
kd0ctω

2

ω−1

) 1
2
)

.

127

Part III

Applications to Cryptology

129

Chapter 6

PIP solution in cyclotomic fields and

cryptanalysis of an FHE scheme

Contents

6.1 Situation of the problem and cryptosystems that rely on SPIP 132

6.2 Solving the PIP or how to perform a full key recovery? 134

6.3 Description of the algorithm . 135

6.3.1 Step 1: Reduction to the totally real subfield 135

6.3.2 Step 2: Descent phase . 136

6.3.3 Step 3: Case of L|∆K|
(1

2

)
-smooth ideals 141

6.3.4 Final Step: Reduction to a short generator 143

6.4 Complexity analysis . 145

6.5 Implementation results . 146

131

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

Homomorphic encryption is a form of encryption that allows any sequence of opera-

tions to be carried out on a ciphertext, thus generating an encrypted result which, when

decrypted, matches the result of the same sequence of operations performed on the plain-

text. Gentry [Gen09], using lattice-based cryptography, described the first construction for

a Fully Homomorphic Encryption (FHE) scheme. Gentry’s scheme supports both addition

and multiplication operations on ciphertexts, from which it is possible to construct circuits for

performing arbitrary computations.

6.1 Situation of the problem and cryptosystems that rely on SPIP

Among all the FHE schemes proposed in the last decade, the security of a couple of them

directly collapses if is possible to find relatively short generators in principal ideals. This is

the case of the proposal of Smart and Vercauteren [SV10], which is a simplified version of the

original scheme of Gentry [Gen09]. Other schemes based on the same security assumption

include the Soliloquy scheme of Campbell, Groves, and Shepherd [CGS14] and the candidates

for multilinear maps [GGH13, LSS14]. More formally, the underlying — presumably hard —

problem is the following one, already known as SPIP (Short Principal Ideal Problem) or SG-PIP

(Short Generator-Principal Ideal Problem): given some Z-basis of a principal ideal with a

promise that it possesses a “short” generator g for the Euclidean norm, find this generator or

at least a short enough generator of this ideal.

The strategy to address this problem roughly splits into two main steps:

1. PIP: given the Z-basis of the ideal, find a generator, not necessarily short, that is g ′ = g ·u
for a unit u.

2. Reduction: from g ′, find a short generator of the ideal.

Recently, several results have allowed to deal with the second step. Indeed, Campbell,

Groves, and Shepherd [CGS14] claimed in 2014 an — although unproven — efficient solution

for power-of-two cyclotomic fields, confirmed by experiments conducted by Schanck [Sch15]

in 2015. Eventually, the proof was provided by Cramer, Ducas, Peikert, and Regev [CDPR16],

together with an extension to all prime-power cyclotomic fields. Throughout this chapter, we

focus on the resolution of the first step, the Principal Ideal Problem (PIP). Nonetheless, for

completeness, we present briefly the reduction from SPIP to PIP in Section 6.3.4.

As a direct illustration of the resolution of this problem, we present an attack on the

scheme that Smart and Vercauteren present in [SV10], which leads to a full key recovery. This

attack is our key thread throughout the exposition of the algorithm. Before going any further

in the details of the attack, we recall in Algorithm 5 the key generation process in the case

132

6.1. Situation of the problem and cryptosystems that rely on SPIP

of power-of-two cyclotomic fields. This instantiation is the one chosen by the authors for

presenting their implementation results.

Algorithm 5 Key Generation of the scheme [SV10].

Input: The security parameter n = 2m .
Output: A pair

(
sk,pk

)
of secret/public keys.

1: SetΦ2n(X) = X n +1 as the polynomial defining the cyclotomic field K = Q(ζ2n)
2: repeat
3: G(X) = 1+2·S(X) for S(X) of degree n−1 with coefficients absolutely bounded by 2

p
n

4: until the norm N
(〈G(ζ2n)〉) is prime

5: Set g =G(ζ2n) ∈OK

6: return
(
sk= g ,pk= HNF

(〈
g
〉))

Remark 6.1.1. The public key can be any Z-basis of the ideal generated by g , or even a two-

elements representation of this ideal. Indeed, [SV10] provides the public key as a pair of

elements that generates the lattice.

As our attack consists in a full secret-key recovery, based on just the public key, the encryp-

tion and decryption procedures are irrelevant for our purposes and thus omitted. Even though

this work is more concerned with the principal ideal problem rather than the reduction step,

we emphasize the fact that the short generator resulting from this reduction can be any of

the g ·ζi
2n , for 1 ≤ i ≤ 2n, which all have the same Euclidean norm. This is not an issue, since all

these keys are equivalent with regard to the decryption procedure. In addition, in this precise

construction of the Smart and Vercauteren FHE scheme, the only odd coefficient of G(X) is the

constant one, so that we may recover the exact generator g readily — a multiplication by ζ2n is

only a shift in the coefficients.

The overall complexity of our attack is subexponential, namely L|∆K|
(1

2

)
. This beats the

previous state of the art which runs in time L|∆K|
(2

3 +ε
)
, derived from the combined work

of [BF14] and [CDPR16]. We also provide an implementation that breaks the smallest instantia-

tions of the scheme [SV10] described in the original paper. Most of the tools have already been

explained in Chapter 5, since this attack predates the generalization presented in Chapter 5.

Solving the PIP is also the subject of research on quantum algorithms: Biasse and Song [BS16]

described a quantum polynomial-time solution for classes of number fields of arbitrary degree.

We have already computed the discriminant of Q(ζm) in Section 4.1. For a prime-power

cyclotomic field, we get
∣∣∣∆Q(ζpk)

∣∣∣= p(kp−k−1)pk−1
. In particular, when p = 2, it is the case that∣∣∣∆Q(ζ2m+1)

∣∣∣ = 2m2m
. For power-of-two cyclotomic fields, we then have L|∆K|(α) = 2O(nα log(n)).

Thus, writing the complexity as L|∆K|(α) or 2O(nα log(n)) is equivalent. We choose to use the

L-notation, since it facilitates the exposition of the complexities presented in this chapter.

133

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

6.2 Solving the PIP or how to perform a full key recovery?

We recall that our ultimate goal is to perform a full key recovery given only the public elements.

As mentioned in [SV10], this problem is obviously much more difficult than recovering a

plain-text from a cipher-text which is based on the bounded distance decoding problem and

the security level is set according to the alleged hardness of this problem. We first give an

overview of the whole strategy and then present each part in-depth. But before going any

further into the details of the attack, let us fix the notation. The number field where the PIP is

defined is Q (ζ2n), for n = 2m , defined by the polynomial X n+1, as in Section 6.1. For simplicity

we write ζ for ζ2n . Though we focus on power-of-two cyclotomic fields, all our results can be

easily generalized to arbitrary prime-power cyclotomic fields. Our starting point is the public

key, that is a somewhat “bad” basis of the principal ideal a= 〈
g
〉

, generated by the secret key g .

Before any other operations, the dimension of the ideals involved is shrunk by half by

reducing the problem to an equivalent one in the totally real subfield Q
(
ζ+ζ−1

)
. This is not

mandatory, but it makes the computation easier. This part of the algorithm is a straightforward

consequence of the Gentry-Szydlo algorithm introduced in [GS02]. The problem is now

reduced to the search for a generator of an ideal a+ in the totally real subfield. The strategy

is then to first iteratively reduce the size of the ideals involved, until we eventually reach a

B-smooth ideal as , for a fixed bound B > 0, and an algebraic integer h such that 〈h〉 =a+ ·as .

This is the descent phase.

The next step is finding a generator of as . We use a strategy based on class group computa-

tion. It consists in finding a generating set of all the relations among the generators of the class

group, and then rewrite the input ideal with respect to these generators. Then we can recover

a generator h0 of as by solving a linear system of equations. The latter allows us to derive a

generator of the ideal a+: h ·h−1
0 . A generator of the public-key ideal is then obtained by lifting

a generator of the ideal a+ from the totally real subfield to the initial number field Q(ζ); for

this step it suffices to multiply the current generator by another algebraic integer obtained

during the computation. Finally, given a solution to the PIP, it remains to recover the secret

key, which is done by reducing the generator found to a short one, as described in [CDPR16].

Consequently, the full algorithm can be split in four main steps, which are, in a nutshell:

1. Perform a reduction from the cyclotomic field to its totally real subfield, allowing to work

in smaller dimension.

2. Then a descent lowers the size of the ideals involved.

3. Collect relations and run linear algebra to construct small ideals and a generator.

4. Eventually derive a small generator from the bigger one.

134

6.3. Description of the algorithm

6.3 Description of the algorithm

Let us now get into the details of all steps sketched above.

6.3.1 Step 1: Reduction to the totally real subfield

We may assume that the input public key is specified as a Z-basis (b1, . . . ,bn) of an ideal a

belonging to the cyclotomic field Q(ζ) of dimension1 n. The larger the dimension is, the harder

the algebraic numbers are to handle and even only to represent. However, it is possible to halve

the dimension. The main part of this step relies on the so-called Gentry-Szydlo algorithm, first

described in [GS02] as an attack against the NTRU scheme and later revised and generalized

by Lenstra and Silverberg in [LS14].

This original algorithm from [GS02] takes as input a Z-basis of an ideal a in the ring

Z[X]
/〈X n +1〉 — with the promise to be principal — and the algebraic integer u · ū, for u a

generator of a. Here, ū denotes the conjugate of u for the automorphism defined by ζ 7→ ζ−1. It

then recovers in polynomial time the element u. In our case, we can not perform the recovery

of the generator g , the secret key of the scheme, since a priori we do not have access to any

kind of information about the product g · ḡ .

To overcome this difficulty, we introduce another algebraic integer u = N (g) g ḡ−1, as

described by Garg, Gentry, and Halevi in [GGH13, Section 7.8.1]. Here the norm factor is

included only to avoid the introduction of denominators in the definition of u. Although u is

still unknown at this point, thanks to the Z-basis of
〈

g
〉

we can construct a Z-basis of 〈u〉 and

compute the product u · ū, as in that case, it simply corresponds to N (g)2.

Hence, we are able to compute u in polynomial time using the Gentry-Szydlo algorithm,

and from this element u, we can directly reconstruct g ḡ−1. Using the basis of a, we then

introduce the family of vectors

ci = bi

(
1+ ḡ

g

)
,

providing a basis of the ideal a+ generated by g + ḡ . This ideal belongs to the totally real

subfield Q
(
ζ+ζ−1

)
, of index 2 in Q(ζ). From now on, we denote by O+

K the ring of integers

of Q
(
ζ+ζ−1

)
, corresponding to OK ∩Q

(
ζ+ζ−1

)
.

Let us suppose briefly that we know the generator g + ḡ of a+. Then it would be sufficient

to multiply it by 1
1+g ḡ−1 to recover the secret key g . Hence, we have reduced the problem of

finding a generator of the ideal a belonging to the cyclotomic field of dimension n to the one

of finding a generator of ideal a+ that belongs to the totally real subfield, whose dimension

is n
2 . For a more detailed presentation of this technique, see [GGH13, Theorem 8].

1The smallest security parameters of the Smart and Vercauteren scheme is n = 256.

135

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

Note that even though the generator is known up to a unit — i.e. (g + ḡ) · v for v ∈UQ(ζ) —

the generator of a that is found is g · v . Due to the last reduction part, this suffices to find a

short generator.

One could wonder if working in a real field is required for the remaining parts of the attack.

This is not the case: all we are interested in is halving the dimension. For the asymptotic

complexity, this initial step is mostly irrelevant since it only gives a speedup of a constant

factor in the exponent. But in practice, it allows to double the dimension of the tractable cases,

implying attacking security parameters that are twice bigger! See also the final paragraph of

Section 6.5.

6.3.2 Step 2: Descent phase

Let us momentarily set aside the algebraic integer obtained in the previous phase and only

focus on the ideal a+. By construction, it is principal and generated by g + ḡ . In the sequel, all

the computations are performed in the totally real subfield of dimension n
2 .

The goal of this phase is to find an algebraic integer h and a B-smooth principal ideal as ,

such that 〈h〉 =a+ ·as , for a certain bound B > 0. These objects are discovered iteratively, by

generating at each step ideals of norm smaller and smaller. Since we want a global complexity

L|∆K|
(1

2

)
, the smoothness bound B is chosen as L|∆K|

(1
2

)
. In order to bootstrap this descent, we

first need to find an ideal that splits as a product of multiple prime ideals of controlled norm,

that is in our case, upper bounded by L|∆K|(1). The method shares many similarities with the

one described in Section 5.5. However, the special case of cyclotomic fields allows a number

of simplifications. For the sake of simplicity, we omit the second constant of the complexity

throughout the description of the algorithm. The method described in Section 5.5 is used to

provide an estimate in Section 6.4.

Initial round. As mentioned, we aim to construct efficiently an L|∆K|(1)-smooth principal

ideal from a+. Formally, we want to prove the following:

Theorem 6.3.1. Let K be a number field. Assuming Heuristic 1.4.20, from any ideal a⊂OK, it

is possible to generate in expected time L|∆K|
(1

2

)
an integral ideal b that is L|∆K|(1)-smooth and

an integer v such that

〈v〉 =a ·b.

The difficulty of this preliminary part is that a priori the norm of the input ideal a can

be large. We thus want to construct at first an ideal whose norm is bounded independently

from N (a) and that belongs to the same ideal class as a. We proceed by ideal-lattice reduction.

Using the canonical embedding σ, any integral ideal a can be viewed as a lattice: σ(a). As

136

6.3. Description of the algorithm

usual when dealing with lattice reduction, we are interested in small vectors, or in the present

case equivalently, algebraic integers with small norm.

From a similar analysis as the one presented in Section 4.3, it follows from Theorem 1.1.10

and Lemma 1.4.9 that the smallest vector v of the BKZβ-reduced basis of σ(a) has a norm

that satisfies ‖σ(v)‖ ≤ β
n−1

2(β−1) N (a)
1
n |∆K| 1

2n . The cost of this reduction is upper bounded by

Poly
(
n, logN (a)

) ·2O(β). Since the ideal a contains 〈v〉, there exists a unique integral ideal b

satisfying 〈v〉 = a ·b. From the upper bound on ‖σ(v)‖, we can bound the norm of this new

ideal b.

From Lemma 1.4.2, the field norm of v is upper bounded by the n-th power of this bound

and soN (〈v〉) ≤β n(n−1)
2(β−1) ·p|∆K|·N (a). By the multiplicative property of the norm, this inequality

results in

N (b) ≤β n(n−1)
2(β−1) ·

√
|∆K|.

Because K is a cyclotomic field, we are able to choose a block-size β= logŁ|∆K|
(1

2

)
since

logŁ|∆K|
(1

2

)= n1/2+o(1) ≤ n. Then we are able to generate in time L|∆K|
(1

2

)
an integral ideal of

norm bounded by L|∆K|
(3

2

)
.

This last result allows us to find an ideal of norm bounded independently from N (a).

We then want this new ideal to split as a product of multiple prime ideals of controlled

norms. Thanks to Corollary 1.4.21, the probability for an integral ideal b of norm bounded

by L|∆K|
(3

2

)
to be L|∆K|(1)-smooth is greater than L|∆K|

(1
2

)−1
. In addition, using ECM to test for

smoothness keeps the complexity in L|∆K|
(1

2

)
(see Proposition 1.4.18). Therefore, repeating

the last construction L|∆K|
(1

2

)
times on randomized independent inputs eventually yields an

L|∆K|(1)-smooth ideal. The simplest strategy to perform this randomization of the input ideal

is to compose it with some factors of norm less than B = Ł|∆K|
(1

2

)
. Formally, we denote by

B = {p1, . . . ,p|B|} the set of all prime ideals of norm upper bounded by Ł|∆K|
(1

2

)
. Let k, A > 0

be fixed integers. We choose p j1
, . . . ,p jk

prime ideals of norm below Ł|∆K|
(1

2

)
. Then for any

k-tuple (e1, . . . ,ek) ∈ {1, . . . , A}k , we have

N
(
a ·

k∏
i=1

pei

ji

)
≤N (a) ·

k∏
i=1

N
(
pei

ji

)
≤N (a) ·L|∆K|

(
1

2

)k·A
=N (a) ·L|∆K|

(
1

2

)
.

Thus, the randomization can be done by choosing uniformly at random the tuple (e1, . . . ,ek)

and k prime ideals in B. Since from Landau’s Prime Ideal theorem, |B| = L|∆K|
(1

2

)
, the set of

possible samples is large enough for our purposes.

Other ways to perform the randomization may be by randomizing directly the lattice reduc-

tion algorithm or by enumerating points of the lattice of norm close to the norm guarantee and

change the basis vectors by freshly enumerated ones. The latter would be useful in practice as

it reduces the number of reductions (see Remark 4.2.3 for more details).

137

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

This last remark concludes the proof of Theorem 6.3.1. The full outline of this bootstrap

approach is given in Algorithm 6.

Algorithm 6 Initial reduction to an L|∆K|(1)-smooth ideal.

Input: An ideal a of arbitrarily large norm and B, A, and k as above for the randomization.
Output: An integer v and an L|∆K|(1)-smooth ideal b such that 〈v〉 =ab.

1: Set b=a

2: while b is not L|∆K|(1)-smooth do
3: Choose p j1

, · · · ,p jk
uniformly at random in B

4: Set ã=a ·∏pei

ji
for random ei ∈ {−A, . . . , A}

5: Generate v and b̃ from ã as in Theorem 6.3.1
6: Set b= b̃ ·∏p−ei

ji

7: end while
8: return v and b

Subsequent steps. In the proof of Theorem 6.3.1, we use a classical reduction in order to

find a short element in the embedding of the considered ideal. We could not use directly

Cheon’s trick here since the norm of the ideal a+ — and so the determinant of its coefficient

embedding — is potentially large. Nonetheless, the norm of prime ideals appearing in the

factorization are by construction bounded, hence a natural question is to look at the bounds

that apply when applying the method referred to below. The systematic treatment of this

question is the aim of Theorem 6.3.2.

Theorem 6.3.2. Let a be an integral ideal of norm below L|∆K|(α), for 1
2 ≤α≤ 1. Then, in

expected time L|∆K|
(1

2

)
, it is possible to construct an algebraic integer v and an L|∆K|

(2α+1
4

)
-

smooth ideal b such that

〈v〉 =a ·b.

Proof. The core of the proof is similar to the proof of Theorem 6.3.1 as it heavily relies on

lattice reduction and randomization techniques. The major difference lies in the embedding

with respect to which the reduction is performed. In Theorem 6.3.1, the canonical embedding

is used, whereas here we use the coefficient embedding ς. It avoids the possibility that a power

of the discriminant occurs in the field norm of the output of BKZ. Nonetheless, remark that

since we work in the totally real subfield, we cannot use a naive coefficients embedding of

this subfield. In order to benefit from the nice shape of the defining polynomial X N +1 of the

cyclotomic field, we use instead a fold-in-two strategy: the embedding of O+
K is defined as the

coefficient embedding ς+ for the Z-basis (ζi +ζ−i)i . Hence, for any v ∈O+
K,

‖ς(v)‖ =p
2‖ς+(v)‖.

138

6.3. Description of the algorithm

Let L = ς+(a) be the embedding of a. Its determinant is N (a). Then, with the same

block-size β= logŁ|∆K|
(1

2

)=O
(p

n logn
)
, we have

detL≤ L|∆K|(α) = 2O(nα log(n)) ≤β n2

2β .

Using the algorithm of Theorem 1.1.10 yields in time L|∆K|
(1

2

)
an integer v satisfying

‖ς+(v)‖ ≤β
√

2logβ(detL)

β
(1+o(1)) ≤ L|∆K|

(
α

2
− 1

4

)
.

Using Corollary 1.4.7 to formulate this in terms of the field norm induces

NK+/Q(v) ≤
(p

2(n +1)
)n · ‖ς(v)‖n = L|∆K|(1) ·L|∆K|

(
α

2
+ 3

4

)
.

Since α≥ 1
2 , we then have N (〈v〉) =NK/Q(v) ≤ L|∆K|

(
α
2 + 3

4

)
.

Because the ideal a contains 〈v〉, there exists a unique integral ideal b, satisfying 〈v〉 =a ·b.

We find that N (b) ≤ L|∆K|
(
α
2 + 3

4

)
from the multiplicative property of the norm and N (a) =

L|∆K|(1) ≤ L|∆K|
(
α
2 + 3

4

)
. Under Heuristic 1.4.20, this ideal is L|∆K|

(
α
2 + 1

4

)
-smooth with probabil-

ity L|∆K|
(1

2

)
. Eventually performing the randomization-and-repeat technique as in the initial

round, this reduction of the coefficient embedding yields the desired couple (v,b) in expected

time L|∆K|
(1

2

)
.

Descending to B-smoothness. After the first round, we end up with an L|∆K|(1)-smooth ideal,

denoted by a(0), and an algebraic integer h(0) satisfying

〈
h(0)〉=a+ ·a(0),

with a+ the ideal of the totally real subfield obtained as a result of the Gentry-Szydlo algorithm.

The factorization of a(0) gives

a(0) =∏
j
a(0)

j ,

where the a(0)
j are integral prime ideals of norm upper bounded by L|∆K|(1). Taking the norms

of the ideals involved in this equality, it is found that the number of terms in this product

is O(nI), with nI =
(

log |∆K|
loglog |∆K|

) 1
2 =O

(p
n

)
. Then applying Theorem 6.3.2 to each small ideala(0)

j

gives rise in expected time L|∆K|
(1

2

)
to ideals a(1)

j that are L|∆K|
(2×1+1

4

)= L|∆K|
(3

4

)
-smooth and

integers h(1)
j such that for every j ,

〈
h(1)

j

〉
=a(0)

j ·a(1)
j .

139

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

For each factor a(1)
j , let us write its prime decomposition:

a(1)
j =∏

k
a(1)

j ,k .

Once again, the number of terms appearing is O(nI). Since we have N
(
a(1)

j ,k

)
≤ L|∆K|

(3
4

)
,

performing the same procedure for each ideal a(1)
j ,k then yields L|∆K|

(5
8

)
-smooth ideals a(2)

j ,k and

integers h(2)
j ,k such that 〈

h(2)
j ,k

〉
=a(1)

j ,k ·a(2)
j ,k ,

once again in expected time L|∆K|
(1

2

)
. Remark that this smoothness bound L|∆K|

(5
8

)
is obtained

as L|∆K|
(2×3+1

4

)
, as follows from Theorem 6.3.2. This reasoning naturally leads to an iterative

strategy for reduction. At step k, we want to reduce an ideal a(k−1)
a1,...,ak−1

which is L|∆K|
(

1
2 + 1

2k+1

)
-

smooth. As before, we have a decomposition — with O(nI) terms — in smaller ideals:

a(k−1)
a1,...,ak−1

=∏
j
a(k−1)

a1,...,ak−1, j .

Using Theorem 6.3.2 for each factor a(k−1)
a1,...,ak−1, j of norm bounded by L|∆K|

(
1
2 + 1

2k+1

)
leads to

L|∆K|
(

1
2 + 1

2k+2

)
-smooth ideals a(k)

a1,...,ak−1, j and algebraic integers h(k)
a1,...,ak−1, j such that

〈
h(k)

a1,...,ak−1, j

〉
=a(k−1)

a1,...,ak−1, j ·a(k)
a1,...,ak−1, j ,

since
2×

(
1
2+ 1

2k+1

)
+1

4 = 1
2 + 1

2k+2 .

As a consequence, one can generate L|∆K|
(

1
2 + 1

logn

)
-smooth ideals with the previous

method in at most
⌈

log2 logn
⌉

steps. At this point, only (nI)dlog2(logn)e ideals and algebraic inte-

gers appear since at each step this number is multiplied by a factor O(nI). As deriving a single

integer/ideal pair requires expected time L|∆K|
(1

2

)
, the overall complexity remains L|∆K|

(1
2

)
.

The final step is done in the same way as in Section 5.5. However, as |∆K| = nn , a quick

calculation reveals that

logL|∆K|
(

1

2
+ 1

logn

)
=O

(
n

1
2+ 1

logn log(n)
)

=O
(
n

1
2 log(n)

)
·n

1
logn .

Since the last factor n
1

logn is e = exp(1), we obtain that

logL|∆K|
(

1

2
+ 1

logn

)
= logL|∆K|

(
1

2

)
,

140

6.3. Description of the algorithm

so that after at most
⌈

log2 logn
⌉

steps, we have ideals that are L|∆K|
(1

2

)
-smooth.

At the end of this final round, we may express the input ideal as the product of ideals for

which we know a generator and others that have by construction norms bounded by L|∆K|
(1

2

)
.

Let l denote the index of the final step. To avoid having to deal with inverse ideals, we may

assume without loss of generality2 that l is even. Explicitly, we have

〈
h(0)〉=a+ ·a(0) =a+ ·∏

a1

a(0)
a1

=a+ ·
〈∏

a1

h(1)
a1

∏
a1,a2,a3

h(3)
a1,a2,a3∏

a1,a2

h(2)
a1,a2

〉
· ∏

a1,a2,a3

a(3)
a1,a2,a3

=a+ ·
〈 ∏

a1,...,al+1

∏
t∈2Z+1

h(t)
a1,...,at∏

s∈2Z
h(s)

a1,...,as

〉
· ∏

a1,...,al+1

a(l)
a1,...,al+1

.︸ ︷︷ ︸
=as

In this last expression, the indices are chosen such that 1 ≤ t ≤ l and 2 ≤ s ≤ l . We also recall

that all the quantities involved belong to the totally real subfield Q(ζ+ζ−1). By construction,

the ideal as is L|∆K|
(1

2

)
-smooth and we directly get h ∈O+

K such that 〈h〉 = a+ ·as . The full

outline of this descent phase is sketched in Figure 6. Remark that the number of terms, which

is at most O(n)l = L|∆K| (o(1)), is negligible in the final complexity estimate.

6.3.3 Step 3: Case of L|∆K|
(1

2

)
-smooth ideals

At this point, we have reduced the search for a generator of a principal ideal of large norm

to the search for a generator of a principal ideal as which is L|∆K|
(1

2

)
-smooth. If we can find

a generator of as in time L|∆K|
(1

2

)
, from the previous steps we directly find a generator of a+,

and so a generator of a, that is the secret key. To tackle this final problem, we follow the same

approach as in Chapter 5 relying on class group computation: we consider the previously

introduced set B of prime ideals of norm below B > 0 where B = Ł|∆K|
(1

2

)
and look for relations

of the form

〈v〉 =∏
i
pei

i , for v ∈OK+ .

2We can always run an additional step in the descent without changing the overall complexity.

141

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

a+ The input ideal

L a+ ·∏i p
ei

ji

h(0) a(0) a(0) =∏
j a

(0)
j

L|∆K|
(1

2

)× σ

σ−1

Randomization

Lattice reduction

a(0)
a1

N
(
a(0)

a1

)
≤ L|∆K|(1)

L a(0)
a1

·∏i p
ei

ji

h(0)
a1

a(1)
a1

a(1)
a1

=∏
j a

(1)
a1, j

L|∆K|
(1

2

)× ς

ς−1

Randomization

Lattice reduction

a(l−1)
a1,...,al

L a(l−1)
a1,...,al

·∏i p
ei

ji

h(l)
a1,...,al

a(l)
a1,...,al

a(l)
a1,...,al

L|∆K|
(1

2

)
-smooth

L|∆K|
(1

2

)× ς

ς−1

Randomization

Lattice reduction

l = ⌈
log2 logn

⌉
steps

Figure 6: The descent algorithm.

The relation collection is performed in a similar way as in Chapter 5: due to the nice

shape of the defining polynomial X n + 1, the algebraic integers whose representation as

polynomials in ζ have small coefficients also have small norms. Let us fix an integer A such

that 0 < A ≤ L|∆K|(0) = log |∆K|. Then for any integers (v0, . . . , v n
2 −1) ∈ {−A, . . . , A}

n
2 , we define the

element v = v0 + ∑
i≥1

vi
(
ζi +ζ−i

)
. The norm of this element in K+ is upper bounded by L|∆K|(1).

Indeed, it corresponds to the square root of its norm in K, which is below nn · An = L|∆K|(1)

by Lemma 1.4.4. Then under Heuristic 1.4.20, the element v generates an ideal 〈v〉 that is

L|∆K|
(1

2

)
-smooth with probability L|∆K|

(1
2

)−1
. This means that we need to draw on average

L|∆K|
(1

2

)
independent algebraic integers to find one relation.

To bound the runtime of the algorithm, we also need to assume Heuristic 4.2.2. It implies

that there exists K ¿ L|∆K|
(1

2

)
such that collecting K · |B| relations suffices to obtain a relation

142

6.3. Description of the algorithm

matrix that has full rank. We conclude that L|∆K|
(1

2

)2 = L|∆K|
(1

2

)
independently drawn algebraic

integers suffice to generate a full-rank matrix. Of course, the set of algebraic integers arising

from the previous construction is large enough to allow such repeated sampling, because its

size is L|∆K|(1). We store the relations in a K |B|× |B| matrix M , and store the corresponding

algebraic integers in a vector V .

v1

v2
...

vK |B|

→
→
...

→

M1,1 · · · M1,|B|
M2,1 · · · M2,|B|

...
...

MK |B|,1 · · · MK |B|,|B|

 =⇒ ∀i ,〈vi 〉 =
|B|∏
j=1

p
Mi , j

j .

The L|∆K|
(1

2

)
-smooth ideal as splits over the set B, so that there exists a vector Y in Z|B|

containing the exponents of the factorization

as =∏
i
pYi

i .

As the relations stored in M generate the lattice of all elements of this form, the vector Y

necessarily belongs to this lattice. Hence solving the equation M X = Y yields a vector X ∈ ZK |B|.
From this vector, we can recover a generator of the ideal since:

∏
i
pYi

i =
〈

v X1
1 · · ·v

XK |B|
K |B|

〉
. (6.1)

By construction, N
(
as

) ≤ L|∆K|
(

l+1
2

)
so that the coefficients of Y are bounded by L|∆K|(0).

Since solving such a linear system with Dixon’s p-adic method [Dix82] can be done in time

Poly
(
d , log‖M‖) where d is the dimension of the matrix and ‖M‖ = max |Mi , j | the maximum

of its coefficients, we can find X in time L|∆K|
(1

2

)
.

6.3.4 Final Step: Reduction to a short generator

As mentioned in Section 6.1, this part of the algorithm is a result of Cramer, Ducas, Peikert,

and Regev [CDPR16]. They state that finding a short generator given an arbitrary one can be

done in polynomial time in any prime-power cyclotomic ring. For completeness, we present a

brief overview of their reduction.

As a preliminary observation, note that for prime-power cyclotomic fields, a set of fun-

damental units is given for free, whereas their computation in arbitrary number fields is

computationally hard. A second remark is that we know that there exists a small generator of

the considered ideal. Then, instead of solving a general closest vector problem (CVP), we solve

an instance of bounded-distance decoding problem (BDD). The key argument is based on a

143

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

precise study of the geometry of the Log-unit lattice of prime-power cyclotomic fields (see

Section 1.5.2 for the required basic facts about units). Finally, the geometric properties of the

units in those fields make it possible to solve the BDD problem in this lattice in polynomial

time, instead of exponential time as for generic instances.

Theorem 6.3.3 ([CDPR16, Theorem 4.1]). Let D be a distribution over Q(ζ) with the property

that for any tuple of vectors v1, . . . , v n
2 −1 ∈ R

n
2 −1 of Euclidean norm 1 that are orthogonal to the

all-1 vector 1, the probability that the inequality
∣∣(Log g , vi

)∣∣< c
p

2n · log(2n)−
3
2 holds for all i

is at least some β> 0, where g is chosen from D and c is a universal constant. Then there is an

efficient algorithm that, given g ′ = g ·u, where g is chosen from D and u ∈ C is a cyclotomic

unit, outputs an element of the form ζ j · g with probability at least β.

Cyclotomic units. While giving the complete description of the units of a generic number

field is a computationally hard problem, it is possible to describe a subgroup of finite index of

the unit group in cyclotomic fields: the cyclotomic units. This subgroup contains all the units

that are products of numbers3 of the form ζi
m −1 for any 1 ≤ i ≤ m. More precisely we have the

following lemma.

Lemma 6.3.4 ([Was97, Lemma 8.1]). Let m be a prime power, then the group C of cyclotomic

units is generated by ±ζm and (bi)1≤i≤m , where

bi =
ζi

m −1

ζm −1
.

The index of the subgroup of cyclotomic units in the group of units is h+(m), the class

number of the totally real subfield Q
(
ζm +ζ−1

m

)
(see for instance [Was97]). In the case of

power-of-two m, a well supported conjecture states that h+ = 1.

Heuristic 6.3.5 (Weber’s Class Number Problem). We assume that for power-of-two cyclotomic

fields, the class number of its totally real subfield is 1.

Thus, under Weber’s heuristic, the cyclotomic units and the units coincide in the power-of-

two cyclotomic fields.

The reader might argue that, in order to apply the previous theorem to the output of

our algorithm, we should ensure that we produce a generator up to a cyclotomic unit and

not up to an arbitrary unit. In the specific case of power-of-two cyclotomic fields, we can

rely on Weber’s heuristic (Heuristic 6.3.5) to make sure that this is indeed the case. In case

h+ > 1, two solutions are given in [CDPR16]. The first one is to directly compute the group

3One should notice that if m is a prime power, ζi
m −1 is not a unit, but bi as in Lemma 6.3.4 is.

144

6.4. Complexity analysis

of units, which is hopefully determined by the kernel of the matrix M arising in the third

stage (see Section 2.3). One can then enumerate the h+ classes of the group of units modulo

the subgroup of cyclotomic units. Another possibility is to generate a list of ideals, sampled

according to the same distribution as the input ideal, with a known generator. Then, we apply

the PIP algorithm to these ideals, and deduce the cosets of the group of units modulo the

subgroup of cyclotomic units, which are likely to be output.

The complete key recovery, combining our PIP algorithm and the aforementioned reduc-

tion, is outlined in Algorithm 7.

Algorithm 7 Recovery of the secret key by PIP+[CDPR16].

Input: A Z-basis of a.
Output: The secret key g up to a torsion unit.

1: Compute a generator g0 of a from the Z-basis, using Gentry-Szydlo, descent and relation
collection

2: Fix the basis B of the Log-unit lattice
(
Logbi

)
i with bi = ζi

m−1
ζm−1

3: Set t = Log g0 +LogOK

4: return the rounding Bb(B∨)t · te

6.4 Complexity analysis

The overall runtime of our attack is L|∆K|
(1

2

)
, that is about 2

O
(
n

1
2 logn

)
operations. We have

already mentioned the complexity of most parts of our algorithm. However, we provide a brief

summary in this section.

For the reduction algorithms, using BKZ and Cheon’s trick, the block-size is always cho-

sen as logL|∆K|
(1

2

)
so that the complexity is L|∆K|

(1
2

)
. Our choice for the smoothness bound

B = Ł|∆K|
(1

2

)
ensures that time L|∆K|

(1
2

)
suffices for the relation collection and linear system

solution.

In addition, from the work of [GGH13], we get that the first part of the algorithm, corre-

sponding to the reduction to the totally real subfield, is performed in polynomial time.

The last part, which corresponds to the generation of a small generator from an arbitrary

one, runs in polynomial time with respect to the input (B , t) of the rounding algorithm (see

Algorithm 7), thanks to the results of [CDPR16]. However, t = Log g0 +LogOK is of subexpo-

nential size at this stage. Indeed, according to Equation (6.1),

Log g0 = X1 Log v1 +·· ·+XK |B| Log vK |B|,

where each vi is of polynomial size while, by Hadamard’s bound, the integers Xi satisfy the

relation Xi ≤ K |B| K |B|
2 ‖M‖K |B|−1 max‖Y j‖. Therefore, the bit sizes of the Xi are L|∆K|

(1
2

)
, and

145

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

the fixed point approximations of Log vi must be taken at precision b = Ł|∆K|
(1

2

)
to ensure the

accuracy of the value of Log g0 (and therefore t). The rounding computation Bb(B∨)t · te has

an asymptotic cost L|∆K|
(1

2

)
and returns e1, . . . ,er where the ei have bit size L|∆K|

(1
2

)
and

g ′ = g0 ·be1
1 · · ·ber

r =
(
v X1

1 · · ·v
XK |B|
K |B|

)
· (be1

1 · · ·ber
r

)
,

is a short generator of the input ideal. This product cannot be evaluated directly since the

intermediate terms may have exponential size, but it may be performed modulo distinct

prime ideals q1, · · · ,qm such that N
(∏

q j

)
>N (g ′) and then reconstructed by the Chinese

Remainder Theorem. The complexity of this process is bounded by L|∆K|
(1

2

)
.

As a consequence the overall complexity is dominated by the descent step, which runs in

time L|∆K|
(1

2

)
. Referring to the precise analysis in Section 5.5 to estimate the second constant,

we are able to derive a precise complexity estimate. As mentioned in Section 4.1, prime-power

cyclotomic fields — together with their totally real subfields — asymptotically belong to the

class D1,1,1,0. Then the result stated at the very end of Section 5.5.2 implies that the complexity

of this attack can be as low as

L|∆K|
(

1

2
,

ω

2
p

2(ω−1)

)
.

Taking ω= log2 7, we obtain a runtime for our attack of L|∆K|
(1

2 ,0.738
)= 21.066·pn logn .

Remark 6.4.1. This algorithm has a complexity in L|∆K|
(1

2

)
in the discriminant that represents

the size of the number field involved. However, it is important to ascertain that the parameters

of the keys have n
3
2 bits. Therefore we present an algorithm that is “sort of” L

(1
3

)
in the size of

the inputs.

6.5 Implementation results

In addition to the theoretical improvement, our algorithm permits in practice to break concrete

cryptosystems. Our discussion is based on the scheme presented by Smart and Vercauteren

at PKC 2010. In [SV10, Section 7], security estimates are given for parameters n = 2m for

8 ≤ m ≤ 11 since they were unable to generate keys for larger parameters. Our implementation

allows us to find a secret key from the public key for n = 28 = 256 in less than a day: the code

runs with PARI/GP [PARI], with an external call to fplll [fplll], and all the computations are

performed on an Intel(R) Xeon(R) CPU E3-1275 v3 @ 3.50GHz with 32GB of memory. The large

storage requirements are due to the Gentry-Szydlo algorithm.

We perform the key generation as in Algorithm 5. We then obtain a generator for the ideal as

a polynomial in ζ= ζ512, of degree 255 and coefficients absolutely bounded by 2
p

256+1 = 65537.

That corresponds to ideals whose norms have about 4800 bits on average, which is below the

146

6.5. Implementation results

bound 6145 obtained from Lemma 1.4.4, but above the size given in [SV10] (4096). As for all

timings in this section, we have derived a set of 10 keys, and the given time is the average

one. Thus, deriving a secret key takes on average 30 seconds. We test 1381 algebraic integers

resulting in ten that have a prime norm. Then the public key is derived from the secret key in

about 96 seconds.

While, in theory, the first reduction to the totally real subfield seems to be of limited

interest, it is clearly the main part of the practical results: indeed, it reduces in our example

the size of the matrices involved from 256×256 to 128×128. As we know that lattice-reduction

is getting worse while the dimension grows, this part is the key point of the algorithm. Our

code essentially corresponds to the Gentry-Szydlo algorithm together with the trick explained

in Section 6.3.1, in order to output the element u and a basis of the ideal a+ generated by g + ḡ .

This part of the algorithm has the largest runtime, about 20 hours, and requires 24GB of

memory.

At this point, we put aside u and only consider the ideal a+. Our goal is to recover one

generator of this ideal, after which a multiplication by 1
1+u leads to a generator of the input

ideal. The method we have presented is to reduce step by step the norms of the ideals involved

by performing lattice reductions. However, we observe that for the cases we run, the first

reduction suffices: the short vector we find corresponds to a generator. We make use of the

BKZ algorithm implemented in fplll [fplll], with block-size 24 to begin with. It gives a correct

generator with probability higher than 0.75 and runs in less than 10 minutes. If the output

is not correct, we increase the block-size to 30. This always worked and required between 2

and 4 hours.

In addition to the good behavior of this reduction, the generator we found is already small,

by construction. More precisely, it corresponds to g + ḡ , up to a factor that is a power of ζ.

Hence, we recover g ·ζi thanks to u and the decoding algorithm analyzed in [CDPR16] turns

out to be unnecessary for our application. The key recovery is already completed after these

two first steps. Nevertheless, we implemented this part along with a method to find the actual

private key (up to sign). Indeed, because all its coefficients are even except the constant one, it

is easy to identify the power of ζ that appears as a factor during the computation.

Additional work. To illustrate the practical performances of our method, we look at one of

the main other steps of the algorithm: namely the relation collection between generators

of Cl (OK+). Thanks to the good behavior of BKZ, the relation collection is not necessary for

the attack in Q(ζ512), but it is an important part of the computation in higher dimension.

We fix our factor base as all the prime ideals in the totally-real field that lie above a prime

number p that is below the bound c
(
log |∆K|

)2, for a parameter c ∈ {0.1,0.2,0.3}. We list in

147

Chapter 6. PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme

Table 4 the resulting bounds and number of prime ideals, along with the size of the factor base

and the time required to construct the factor base in MAGMA [Magma]. The computations were

performed on a laptop with Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz and 8GB of RAM.

Naturally, this choice of bound would not be sufficient for the descent described in Sec-

tion 6.3.2, because it is polynomial and not subexponential. However, it provides a relation

matrix for the computation of the class group. Reaching a subexponential bound with the

same process seems unlikely. It supports our suspicion that the good implementation results

are a consequence of the small dimension obtained by the Gentry-Szydlo algorithm.

c Bound #primes #Factor Base Time (sec)

0.1 201516 149 18945 1240

0.2 403033 274 35073 2320

0.3 604549 385 49281 3320

Table 4: Construction of differently parametrized factor bases.

The relation collection is performed using algebraic integers of the form

5∑
i=1

ζai +ζ−ai =
5∑

i=1
ζai −ζ256−ai ,

for ai chosen at random in {1, . . . ,255}. This is inspired by the work of Miller [Mil14]. We use

C++ code with the NTL Library [NTL] to find a set of integers with different norms that suffice

to generate the full lattice of relations (see Section 6.3.3). The size of these sets depends on the

bound we have chosen and on the relations selected, so that the timings may vary. Our results

are listed in Table 5. Once we know these integers, we use MAGMA to build the entire matrix of

relations. In particular, we make use of the automorphisms on the field to derive 128 relations

from each integer — this is the reason that we use integers of different norms. Eventually, the

matrices we get are of full rank.

We also ran our code for the algorithm described in [CDPR16] on inputs constructed as a

secret key multiplied by a random non-zero vector of the Log-unit lattice (because in the full

attack described previously, we only have the null vector). This took 150 seconds.

To conclude, for the parameter n = 28, the time of the key recovery is below 24 hours,

and the main part of the computation comes from the reduction to the totally real subfield.

Hence, one may wonder, again, if this step is mandatory, and, this time, the answer is an

unqualified “yes”, because the surprisingly good practical behavior of the BKZ reduction is a

consequence of the dimension of the lattices involved on the one hand — medium dimensions

148

6.5. Implementation results

allow better practical output bounds than the theoretical worst case — and, on the other hand,

the favorable properties of the geometry of the considered ideals induced by the abnormally

small norms of their generators.

c #relations
Time (hours)

relation collection matrix construction

0.1 1500 8.6 1.7

0.2 3400 13.8 4.9

0.3 6300 23.9 10.7

Table 5: Relation collection for the different parameters.

149

Bibliography

[AM93] Arthur O. L. Atkin and François Morain. Finding suitable curves for the elliptic

curve method of factorization. Mathematics of Computation, 60:399–405, 1993.

[Bac90] Eric Bach. Explicit bounds for primality testing and related problems. Mathematics

of Computation, 55:355–380, 1990.

[Bac95] Eric Bach. Improved approximations for Euler products. In Number Theory, CMS

Conference Proceedings, volume 15, pages 13–28, 1995.

[BBB+12] Razvan Barbulescu, Joppe W. Bos, Cyril Bouvier, Thorsten Kleinjung, and Peter L.

Montgomery. Finding ECM-friendly curves through a study of Galois properties.

In Proceedings of the 10th Algorithmic Number Theory Symposium ANTS 2012,

pages 63–86, 2012.

[BBHM02] Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer. A signa-

ture scheme based on the intractability of computing roots. Designs, Codes and

Cryptography, 25(3):223–236, 2002.

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Pe-

ters. Twisted Edwards curves. In Progress in Cryptology - AFRICACRYPT 2008,

Proceedings, pages 389–405, 2008.

[BBL10] Daniel J. Bernstein, Peter Birkner, and Tanja Lange. Starfish on strike. In Progress

in Cryptology - LATINCRYPT 2010, Proceedings, pages 61–80, 2010.

[BBLP13] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. ECM using

Edwards curves. Mathematics of Computation, 82(282):1139–1179, 2013.

[BBT94] Ingrid Biehl, Johannes A. Buchmann, and Christoph Thiel. Cryptographic pro-

tocols based on discrete logarithms in real-quadratic orders. In Advances in

Cryptology - CRYPTO 1994, Proceedings, pages 56–60, 1994.

151

Bibliography

[BDF08] Karim Belabas, Francisco Diaz y Diaz, and Eduardo Friedman. Small generators

of the ideal class group. Mathematics of Computation, 77(262):1185–1197, 2008.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in

nearest neighbor searching with applications to lattice sieving. In Proceedings of

the 27th Annual ACM-SIAM Symposium on Discrete Algorithms SODA 2016, pages

10–24, 2016.

[BEF+17] Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, and

Paul Kirchner. Computing generator in cyclotomic integer rings - A subfield algo-

rithm for the Principal Ideal Problem in L(1/2) and application to the cryptanalysis

of a FHE scheme. In Advances in Cryptology - EUROCRYPT 2017, Proceedings,

pages 60–88, 2017.

[Bel04] Karim Belabas. Topics in computational algebraic number theory. Journal de

Théorie des Nombres de Bordeaux, 16:19–63, 2004.

[BF14] Jean-François Biasse and Claus Fieker. Subexponential class group and unit group

computation in large degree number fields. LMS Journal of Computation and

Mathematics, 17:385–403, 2014.

[BGG+14] Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane Krämer, and

Jean-Pierre Seifert. A practical second-order fault attack against a real-world

pairing implementation. In 2014 Workshop on Fault Diagnosis and Tolerance in

Cryptography, FDTC 2014, pages 123–136, 2014.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-

texts. In Theory of Cryptography, Second Theory of Cryptography Conference, TCC

2005, Proceedings, pages 325–341, 2005.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-

momorphic encryption without bootstrapping. In Innovations in Theoretical

Computer Science 2012, pages 309–325, 2012.

[Bia14a] Jean-François Biasse. An L(1/3) algorithm for ideal class group and regulator

computation in certain number fields. Mathematics of Computation, 83:2005–

2031, 2014.

[Bia14b] Jean-François Biasse. Subexponential time relations in the class group of large

degree number fields. Advances in Mathematics of Communications, 8(4):407–425,

2014.

152

Bibliography

[BJN+99] Johannes Buchmann, Michael J. Jacobson, Stefan Neis, Patrick Theobald, and

Damian Weber. Sieving methods for class group computation. In Algorithmic

Algebra and Number Theory, Proceedings, pages 3–10, 1999.

[BL10] Yuval Bistritz and Alexander Lifshitz. Bounds for resultants of univariate and

bivariate polynomials. Linear Algebra and its Applications, 432:1995–2005, 2010.

[BLLN13] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Improved

security for a ring-based fully homomorphic encryption scheme. In Cryptography

and Coding - 14th IMA International Conference, IMACC 2013, Proceedings, pages

45–64, 2013.

[BS16] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing

class groups and solving the principal ideal problem in arbitrary degree number

fields. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete

Algorithms SODA 2016, pages 893–902, 2016.

[Buc87] Johannes Buchmann. The computation of the fundamental unit of totally complex

quartic orders. Mathematics of Computation, 48(177):39–54, 1987.

[Buc90] Johannes Buchmann. A subexponential algorithm for the determination of class

groups and regulators of algebraic number fields. Séminaire de Théorie des Nom-

bres, Paris 1988-1989, pages 27–41, 1990.

[BW88] Johannes A. Buchmann and Hugh C. Williams. A key-exchange system based on

imaginary quadratic fields. Journal of Cryptology, 1(2):107–118, 1988.

[BW89] Johannes Buchmann and Hugh C. Williams. On the complexity of the class number

of an algebraic number field. Mathematics of Computation, 53(188):679–688, 1989.

[CD91] Henri Cohen and Francisco Diaz y Diaz. A polynomial reduction algorithm. Jour-

nal de Théorie des Nombres de Bordeaux, 3:351–360, 1991.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short

generators of principal ideals in cyclotomic rings. In Advances in Cryptology -

EUROCRYPT 2016, Proceedings, pages 559–585, 2016.

[CEP83] Earl R. Canfield, Paul Erdős, and Carl Pomerance. On a problem of Oppenheim

concerning ’factorisatio numerorum’. Journal of Number Theory, 17:1–28, 1983.

[CGD] Gunter Malle. Class Group Database. http://www.mathematik.uni-kl.de/

~numberfieldtables/.

153

http://www.mathematik.uni-kl.de/~numberfieldtables/
http://www.mathematik.uni-kl.de/~numberfieldtables/

Bibliography

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. SOLILOQUY:

A cautionary tale. ETSI 2nd Quantum-Safe Crypto Workshop, 2014.

http://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_

and_Attacks/S07_Groves.pdf.

[Che26] Nikolai G. Chebotarev. Die bestimmung der dichtigkeit einer menge von

primzahlen, welche zu einer gegebenen substitutionsklasse gehören. Mathe-

matische Annalen, 95:191–228, 1926.

[CL15] Jung Hee Cheon and Changmin Lee. Approximate algorithms on lattices with

small determinant. Cryptology ePrint Archive, Report 2015/461, 2015. http:

//eprint.iacr.org/2015/461.

[CLG09] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash

functions from expander graphs. Journal of Cryptology, 22(1):93–113, 2009.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for

supersingular isogeny Diffie-Hellman. In Advances in Cryptology - CRYPTO 2016,

Proceedings, pages 572–601, 2016.

[Coh93] Henri Cohen. A course in computational algebraic number theory, volume 138 of

Graduate Texts in Mathematics. Springer-Verlag, New-York, 1993.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[Dic30] Karl Dickman. On the frequency of numbers containing prime factors of a certain

relative magnitude. Arkiv för Matematik, Astronomi och Fysik, 22A(10):1–14, 1930.

[Dix82] John D. Dixon. Exact solution of linear quations using p-adic expansions. Nu-

merische Mathematik, 40:137–141, 1982.

[Edw07] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American

Mathematical Society, 44:393–422, 2007.

[EG07] Andreas Enge and Pierrick Gaudry. An L(1/3+ε) algorithm for the discrete loga-

rithm problem for low degree curves. In Advances in Cryptology - EUROCRYPT

2007, Proceedings, pages 379–393, 2007.

[EGT11] Andreas Enge, Pierrick Gaudry, and Emmanuel Thomé. An L(1/3) discrete loga-

rithm algorithm for low degree curves. Journal of Cryptology, 24:24–41, 2011.

154

http://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves.pdf
http://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves.pdf
http://eprint.iacr.org/2015/461
http://eprint.iacr.org/2015/461

Bibliography

[EJ17] Thomas Espitau and Antoine Joux. Practical reduction of quadratic forms with

interval arithmetic. To appear, 2017.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In Advances in Cryptology - CRYPTO 1984, Proceedings, pages

10–18, 1984.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,

1985.

[FJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-

tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryp-

tology, 8(3):209–247, 2014.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and

symmetric encryption schemes. In Advances in Cryptology - CRYPTO 1999, Pro-

ceedings, pages 537–554, 1999.

[Fon09] Felix Fontein. The infrastructure of a global field and baby step-giant step al-

gorithms. PhD thesis, Universität Zürich, 2009. https://user.math.uzh.ch/

fontein/diss-fontein.pdf.

[fplll] The FPLLL development team. fplll, version 5.0, 2016. https://github.com/

fplll/fplll.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.

iacr.org/2012/144.

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In International

Symposium on Symbolic and Algebraic Computation ISSAC 2014, pages 296–303,

2014.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the 41st Annual ACM Symposium on Theory of Computing STOC 2009, pages

169–178, 2009.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from

ideal lattices. In Advances in Cryptology - EUROCRYPT 2013, Proceedings, pages

1–17, 2013.

155

https://user.math.uzh.ch/fontein/diss-fontein.pdf
https://user.math.uzh.ch/fontein/diss-fontein.pdf
https://github.com/fplll/fplll
https://github.com/fplll/fplll
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

Bibliography

[GJ16] Alexandre Gélin and Antoine Joux. Reducing number field defining polynomials:

an application to class group computation. LMS Journal of Computation and

Mathematics, 19:315–331, 2016.

[GJ17a] Alexandre Gélin and Antoine Joux. On the complexity of class group computations

for large-degree number fields. To appear, 2017.

[GJ17b] Alexandre Gélin and Antoine Joux. Reducing the complexity for class group

computations using small defining polynomials. To appear, 2017.

[GKL17] Alexandre Gélin, Thorsten Kleinjung, and Arjen K. Lenstra. Parametrizations

for families of ECM-friendly curves. In Proceedings of the ACM on International

Symposium on Symbolic and Algebraic Computation, ISSAC 2017, 2017. To appear.

[GLM09] Ying H. Gan, Cong Ling, and Wai H. Mow. Complex lattice reduction algorithm

for low-complexity full-diversity MIMO detection. IEEE Transactions on Signal

Processing, 57(7):2701–2710, 2009.

[GN08] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s

inequality. In Proceedings of the 40th Annual ACM Symposium on Theory of

Computing STOC 2008, pages 207–216, 2008.

[GPS16] Steven D. Galbraith, Christophe Petit, and Javier Silva. Signature schemes based

on supersingular isogeny problems. Cryptology ePrint Archive, Report 2016/1154,

2016. http://eprint.iacr.org/2016/1154.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security

of supersingular isogeny cryptosystems. In Advances in Cryptology - ASIACRYPT

2016, Proceedings, pages 63–91, 2016.

[GS02] Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature

scheme. In Advances in Cryptology - EUROCRYPT 2002, Proceedings, pages 299–

320, 2002.

[GW17] Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on supersingu-

lar isogeny cryptosystems. In Post-Quantum Cryptography - 8th International

Workshop, PQCrypto 2017, Proceedings, 2017. To appear.

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential algorithm for

computation of class groups. Journal of American Mathematical Society, 2:839–

850, 1989.

156

http://eprint.iacr.org/2016/1154

Bibliography

[HM00] Safuat Hamdy and Bodo Möller. Security of cryptosystems based on class groups

of imaginary quadratic orders. In Advances in Cryptology - ASIACRYPT 2000,

Proceedings, pages 234–247, 2000.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public

key cryptosystem. In Proceedings of the 3rd Algorithmic Number Theory Sympo-

sium ANTS 1998, pages 267–288, 1998.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice

algorithms using dynamical systems. In Advances in Cryptology - CRYPTO 2011,

Proceedings, pages 447–464, 2011.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s shortest

lattice vector algorithm. In Advances in Cryptology - CRYPTO 2007, Proceedings,

pages 170–186, 2007.

[HS08] Guillaume Hanrot and Damien Stehlé. Worst-case Hermite-Korkine-Zolotarev

reduced lattice bases. arXiv:0801.3331, 2008. https://arxiv.org/pdf/0801.

3331.pdf.

[HT93] Adolf Hildebrand and Gerald Tenenbaum. Integers without large prime factors.

Journal de Théorie des Nombres de Bordeaux, 5(2):411–484, 1993.

[HWCD08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Ed-

wards curves revisited. In Advances in Cryptology - ASIACRYPT 2008, Proceedings,

pages 326–343, 2008.

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies. In Post-Quantum Cryptography - 4th Inter-

national Workshop PQCrypto 2011, Proceedings, pages 19–34, 2011.

[JS14] David Jao and Vladimir Soukharev. Isogeny-based quantum-resistant undeni-

able signatures. In Post-Quantum Cryptography - 6th International Workshop

PQCrypto 2014, Proceedings, pages 160–179, 2014.

[KAKJ17] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao. Post-

quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE

Transactions on Circuits and Systems, 64(1):86–99, 2017.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lat-

tice problems. In Proceedings of the 15th Annual ACM Symposium on Theory of

Computing STOC 1983, pages 99–108, 1983.

157

https://arxiv.org/pdf/0801.3331.pdf
https://arxiv.org/pdf/0801.3331.pdf

Bibliography

[KGV16] Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: scalable

homomorphic implementation of encrypted data-classifiers. IEEE Transactions

on Computers, 65(9):2848–2858, 2016.

[KJA+16] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaffari

Kermani. NEON-SIDH: efficient implementation of Supersingular Isogeny Diffie-

Hellman key exchange protocol on ARM. In Cryptology and Network Security -

15th International Conference, CANS 2016, Proceedings, pages 88–103, 2016.

[KLM+15] Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley, Jerome A.

Solinas, and David Tuller. Failure is not an option: Standardization is-

sues for post-quantum key agreement on the security of supersingular

isogeny cryptosystems. Workshop on Cybersecurity in a Post-Quantum

World, 2015. http://csrc.nist.gov/groups/ST/post-quantum-2015/

presentations/session7-motley-mark.pdf.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, 1987.

[KP76] Donald E. Knuth and Luis Trabb Pardo. Analysis of a simple factorization algo-

rithm. Theoretical Computer Science, 3(3):321–348, 1976.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar

signature schemes. In Advances in Cryptology - EUROCRYPT 1999, Proceedings,

pages 206–222, 1999.

[Lan03] Edmund Landau. Neuer Beweis des Primzahlsatzes und Beweis des Primideal-

satzes. Mathematische Annalen, 56:645–670, 1903.

[Leh33] Derrick H. Lehmer. Factorization of certain cyclotomic functions. Annals of

Mathematics, 34:461–479, 1933.

[Leh88] Emma Lehmer. Connection between Gaussian periods and cyclic units. Mathe-

matics of Computation, 50(182):535–541, 1988.

[Len82] Hendrik W. Lenstra Jr. On the calculation of regulators and class numbers of

quadratic fields. In Journées Arithmétiques 1980, pages 123–150, 1982.

[Len87] Hendrik W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathe-

matics, 126:649–673, 1987.

158

http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-motley-mark.pdf
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-motley-mark.pdf

Bibliography

[LL93] Arjen K. Lenstra and Hendrik W. Lenstra Jr. The development of the number field

sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, 1993.

[LLL82] Hendrik W. Lenstra Jr., Arjen K. Lenstra, and László Lovász. Factoring polynomials

with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[LLMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M. Pollard.

The number field sieve. In Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing STOC 1990, pages 564–572, 1990.

[LO77] Jeffrey C. Lagarias and Andrew M. Odlyzko. Effective versions of the Chebotarev

theorem. Algebraic Number Fields, pages 409–464, 1977.

[LOM79] Jeffrey C. Lagarias, Andrew M. Odlyzko, and Hugh L. Montgomery. A bound for the

least prime ideal in the Chebotarev density theorem. Inventiones Mathematicae,

54(3):271–296, 1979.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning

with errors over rings. Journal of the ACM, 60(6), 2013.

[LS14] Hendrik W. Lenstra and Alice Silverberg. Revisiting the Gentry-Szydlo algorithm.

In Advances in Cryptology - CRYPTO 2014, Proceedings, pages 280–296, 2014.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient

multilinear maps from ideal lattices. In Advances in Cryptology - EUROCRYPT

2014, Proceedings, pages 239–256, 2014.

[Magma] Computational Algebra Group, University of Sydney. MAGMA, version 2.21.6, 2016.

http://magma.maths.usyd.edu.au/magma/.

[Mah60] Kurt Mahler. An application of Jensen’s formula to polynomials. Mathematika,

7:98–100, 1960.

[Mah64] Kurt Mahler. An inequality for the discriminant of a polynomial. Michigan Mathe-

matical Journal, 11:257–262, 1964.

[McC89] Kevin S. McCurley. Cryptographic key distribution and computation in class

groups. Number Theory and Apllications, 265:459–479, 1989.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.

DSN Progress Report, 44:114–116, 1978.

159

http://magma.maths.usyd.edu.au/magma/

Bibliography

[MG94] Maurice Mignotte and Philippe H. Glesser. Landau’s inequality via Hadamard’s.

Journal of Symbolic Computation, 18(4):379–383, 1994.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominal-tuples for ef-

ficient signature-verification and message-encryption. In Advances in Cryptology

- EUROCRYPT 1988, Proceedings, pages 419–453, 1988.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology -

CRYPTO 1985, Proceedings, pages 417–426, 1985.

[Mil14] John C. Miller. Class numbers of totally real fields and applications to the Weber

class number problem. Acta Arithmetica, 164:381–397, 2014.

[MNP01] Andreas Meyer, Stefan Neis, and Thomas Pfahler. First implementation of cryp-

tographic protocols based on algebraic number fields. In Information Security

and Privacy, 6th Australasian Conference, ACISP 2001, Proceedings, pages 84–103,

2001.

[Moi30] Abraham De Moivre. Miscellanea analytica de seriebus et quadraturis. London,

1730.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-

ization. Mathematics of Computation, 48:243–264, 1987.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduc-

tion. In Advances in Cryptology - EUROCRYPT 2016, Proceedings, pages 820–849,

2016.

[NTL] Victor Shoup. NTL: A Library for doing Number Theory, version 9.11.0, 2016.

http://http://www.shoup.net/ntl/.

[Oes79] Joseph Oesterlé. Versions effectives du théorème de Chebotarev sous l’hypothèse

de Riemann généralisée. Astérique, 61:165–167, 1979.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Advances in Cryptology - EUROCRYPT 1999, Proceedings, pages 223–238,

1999.

[PARI] The PARI Group, Bordeaux. PARI/GP, version 2.7.6, 2016. http://pari.math.

u-bordeaux.fr/.

160

http://http://www.shoup.net/ntl/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

Bibliography

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector

problem: extended abstract. In Proceedings of the 41st Annual ACM Symposium

on Theory of Computing STOC 2009, pages 333–342, 2009.

[Poh93] Michael E. Pohst. Computational algebraic number theory, volume 21 of DMV

Lecture Notes. Birhaüser, Basel, 1993.

[PT00] Sachar Paulus and Tsuyoshi Takagi. A new public-key cryptosystem over a

quadratic order with quadratic decryption time. Journal of Cryptology, 13(2):263–

272, 2000.

[PV06] Dan Page and Frederik Vercauteren. A fault attack on pairing-based cryptography.

IEEE Transactions on Computers, 55(9):1075–1080, 2006.

[PZ89] Michael Pohst and Hans Zassenhaus. Algorithmic Algebraic Number Theory, vol-

ume 30 of Encyclopedia of Mathematics and its Applications. Cambridge University

Press, Cambridge, 1989.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-

phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing

STOC 2005, pages 84–93, 2005.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Commununications of the ACM,

21(2):120–126, 1978.

[SBW94] Renate Scheidler, Johannes A. Buchmann, and Hugh C. Williams. A key-exchange

protocol using real quadratic fields. Journal of Cryptology, 7(3):171–199, 1994.

[Sch82] René Schoof. A hierarchy of polynomial time lattice basis reduction algorithms.

Mathematisch Centrum Computational Methods in Number Theory, pages 235–

286, 1982.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of

Cryptology, 4(3):161–174, 1991.

[Sch15] John Schanck. LOGCVP, Pari implementation of CVP in logZ[ζ2n]∗, 2015. https:

//github.com/jschanck-si/logcvp.

[Sco04] Eira Scourfield. On ideals free of large prime factors. Journal de Théorie des

Nombres de Bordeaux, 16(3):733–772, 2004.

161

https://github.com/jschanck-si/logcvp
https://github.com/jschanck-si/logcvp

Bibliography

[Sey87] Martin Seysen. A probabilistic factorization algorithm with quadratic forms of

negative discriminant. Mathematics of Computation, 84:757–780, 1987.

[Sha69] Daniel Shanks. Class number, a theory of factorization, and genera. In Proceedings

of Symposia in Pure Mathematics, volume 20, pages 415–440, 1969.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–

1509, 1997.

[SIDH] Microsoft Security and Cryptography. SIDH Library, 2016. https://www.

microsoft.com/en-us/research/project/sidh-library/.

[SL96] Arne Storjohann and George Labahn. Asymptotically fast computation of Hermite

normal forms of integer matrices. In Proceedings of the International Symposium

on Symbolic and Algebraic Computation ISSAC 1996, pages 259–266, 1996.

[Ste75] Hans-Joachim Stender. Eine Formel für Grundeinheiten in reinen algebraischen

Zahlkörpern dritten, vierten und sechsten Grades. Journal of Number Theory,

7(2):235–250, 1975.

[Sti30] James Stirling. Methodus differentialis. London, 1730.

[Sto05] Arne Storjohann. The shifted number system for fast linear algebra on integer

matrices. Journal of Complexity, 21(4):609–650, 2005.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13:354–356, 1969.

[STW12] Xi Sun, Haibo Tian, and Yumin Wang. Toward quantum-resistant strong des-

ignated verifier signature from isogenies. In 4th International Conference on

Intelligent Networking and Collaborative Systems INCoS 2012, pages 292–296,

2012.

[Suy85] Hiromi Suyama. Informal preliminary report. (cited in [Mon87]), 1985.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with

relatively small key and ciphertext sizes. In Public Key Cryptography - PKC 2010,

Proceedings, pages 420–443, 2010.

[Thi95] Christoph Thiel. On the complexity of some problems in algorith-

mic algebraic number theory. PhD thesis, Universität des Saarlandes,

162

https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/

Bibliography

1995. https://www.cdc.informatik.tu-darmstadt.de/reports/reports/

Christoph_Thiel.diss.pdf.

[Was97] Lawrence C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 1997.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of

Mathematics, 142(3):443–551, 1995.

163

https://www.cdc.informatik.tu-darmstadt.de/reports/reports/Christoph_Thiel.diss.pdf
https://www.cdc.informatik.tu-darmstadt.de/reports/reports/Christoph_Thiel.diss.pdf

Abstract
A common way to construct public-key cryptosystems is to use the discrete exponentiation in a

finite group where the inverse problem, the discrete logarithm problem, is considered difficult. Several
groups are commonly used: multiplicative group of finite fields or Jacobians of algebraic curves defined
over finite fields. The class group of a number field is another candidate which was sometimes proposed.
To study its viability, it is important to identify the difficulty for this kind of group to determine its
cardinality, its structure and the possible hardness of the discrete logarithm problem. Irrespective
of cryptologic applications, methods to determine the properties of these groups is of independent
mathematical interest.

In this thesis, we focus on class group computations in number fields. We start by describing an
algorithm for reducing the size of a defining polynomial of a number field. There exist infinitely many
polynomials that define a specific number field, with arbitrarily large coefficients, but our algorithm
constructs the one that has the absolutely smallest coefficients. The advantage of knowing such a “small”
defining polynomial is that it makes calculations in the number field easier because smaller values are
involved. In addition, thanks to such a small polynomial, one can use specific algorithms that are more
efficient than the general ones for class group computations.

The generic algorithm to determine the structure of a class group is based on ideal reduction, where
ideals are viewed as lattices. We describe and simplify the algorithm presented by Biasse and Fieker
in 2014 at ANTS and provide a more thorough complexity analysis for it. We also examine carefully
the case of number fields defined by a polynomial with small coefficients. We describe an algorithm
similar to the Number Field Sieve, which, depending on the field parameters, may reach the hoped-for
complexity L

(
1
3

)
.

Finally, our results can be adapted to solve an associated problem: the Principal Ideal Problem.
Given any basis of a principal ideal (generated by a unique element), we are able to find such a generator.
As this problem, known to be hard, is the key-point in several homomorphic cryptosystems, the slight
modifications of our algorithms provide efficient attacks against these cryptographic schemes.

Résumé
L’une des voies privilégiées pour la construction de cryptosystèmes à clé publique est l’utilisation

dans des groupes finis de l’exponentiation discrète, dont le problème inverse, celui du logarithme discret,
est réputé difficile. Plusieurs groupes sont classiquement utilisés : le groupe multiplicatif d’un corps
fini ou la Jacobienne d’une courbe algébrique définie sur un corps fini. Le groupe de classes d’un corps
de nombres est un autre candidat qui a parfois été proposé. Pour étudier sa viabilité, il est important
de bien cerner la difficulté de déterminer la cardinalité et la structure du groupe, ainsi que la difficulté
éventuelle du problème du logarithme discret. Indépendamment de ces applications cryptographiques,
les méthodes utilisées pour résoudre ces problèmes ont aussi un intérêt mathématique.

Dans cette thèse, nous nous intéressons au calcul du groupe de classes d’un corps de nombres. Nous
débutons par décrire un algorithme de réduction du polynôme de définition d’un corps de nombres.
Il existe une infinité de polynômes qui définissent un corps de nombres fixé, avec des coefficients
arbitrairement gros. Notre algorithme calcule celui qui a les plus petits coefficients. L’avantage de
connaître un petit polynôme de définition est qu’il simplifie les calculs entre éléments de ce corps de
nombres, en impliquant des quantités plus petites. En outre, la connaissance d’un tel polynôme permet
l’utilisation d’algorithmes plus efficaces que dans le cas général pour calculer le groupe de classes.

L’algorithme général pour calculer la structure du groupe de classes repose sur la réduction d’idéaux,
vus comme des réseaux. Nous décrivons et simplifions l’algorithme présenté par Biasse et Fieker en
2014 à ANTS et approfondissons l’analyse de complexité. Nous nous sommes aussi intéressés au cas
des corps de nombres définis par un polynôme à petits coefficients. Nous décrivons un algorithme
similaire au crible par corps de nombres (NFS) dont la complexité en fonction des paramètres du corps
de nombres peut atteindre L

(1
3

)
.

Enfin, nos algorithmes peuvent être adaptés pour résoudre un problème lié : le Problème de l’Idéal
Principal. Étant donné n’importe quelle base d’un idéal principal (généré par un seul élément), nous
sommes capables de retrouver ce générateur. Cette application de nos algorithmes fournit une attaque
efficace contre certains schémas de chiffrement homomorphe basés sur ce problème.

	Abstract
	(French) Résumé
	(French) Introduction
	Motivation
	Organisation de la thèse et résultats

	Introduction
	Motivation
	Contributions & Organization

	I Preliminaries
	Algebraic Number Theory Tools
	Linear algebra & Lattices
	Number fields & Polynomials
	Orders & Ideals
	Norms & Smoothness
	Ideal classes & Units

	Previous work on class group computations and related problems
	Exponential strategies for quadratic number fields
	Class group generation
	Subexponential complexity, using index calculus method
	Algorithms related to number fields

	II Reducing the complexity of Class Group Computation
	Reduction of the defining polynomial
	Motivations and link with class group computation
	An optimal algorithm for NF defining polynomial reduction
	Complexity analysis
	Application to class group computation

	Refinements for complexities appearing in the literature for the general case
	The classification defined by classes D is sufficient
	The relation collection
	Complexity analyses
	Using HNF to get an even smaller complexity

	Reducing the complexity using good defining polynomials
	Motivation
	Deriving relations by sieving
	Complexity analyses
	Conclusion on sieving strategy
	Application to Principal Ideal Problem

	III Applications to Cryptology
	PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme
	Situation of the problem and cryptosystems that rely on SPIP
	Solving the PIP or how to perform a full key recovery?
	Description of the algorithm
	Complexity analysis
	Implementation results

	Bibliography

