Loop-abort faults on supersingular isogeny cryptosystems

Alexandre Gélin Benjamin Wesolowski

Laboratoire d'Informatique de Paris 6 – Sorbonne Universités UPMC, France École Polytechnique Fédérale de Lausanne, EPFL IC LACAL, Switzerland

> PQCrypto 2017 – Utrecht 2017/06/26

• Introduced by Jao, De Feo, and Plût in 2011

• Introduced by Jao, De Feo, and Plût in 2011

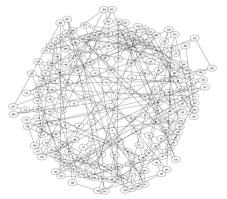
• Based on the same problem as the hash function of [CLG06]

- Introduced by Jao, De Feo, and Plût in 2011
- Based on the same problem as the hash function of [CLG06]

The isogeny graph of a supersingular elliptic curve:

- Introduced by Jao, De Feo, and Plût in 2011
- Based on the same problem as the hash function of [CLG06]

The isogeny graph of a supersingular elliptic curve:



A supersingular elliptic curve is a curve *E* defined over \mathbf{F}_{p^k} such that

 $#E(\mathbf{F}_{p^k}) = 1 \bmod p.$

A supersingular elliptic curve is a curve E defined over \mathbf{F}_{p^k} such that

 $#E(\mathbf{F}_{p^k}) = 1 \bmod p.$

Interesting properties:

- All supersingular elliptic curves can be defined over \mathbf{F}_{p^2}
- About $\frac{p}{12}$ supersingular elliptic curves, up to isomorphism

An isogeny ϕ between two elliptic curves E_1 and E_2 is a surjective group homomorphism with a finite kernel. The degree is defined by

 $\deg \phi = \# \operatorname{Ker} \phi.$

An isogeny ϕ between two elliptic curves E_1 and E_2 is a surjective group homomorphism with a finite kernel. The degree is defined by

 $\deg \phi = \# \operatorname{Ker} \phi.$

Interesting properties:

• $G \subset E_1 \implies$ a unique E_2 and ϕ such that

$$\phi: E_1 \rightarrow E_2$$
 and Ker $\phi = G$

• $E_2 = E/G$ is obtained in $O(\deg \phi)$

• A prime p such that $p+1 = \ell_A^n \ell_B^m$

- A prime p such that $p+1 = \ell_A^n \ell_B^m$
- A supersingular elliptic curve E with $\ell^n_A\ell^m_B$ points

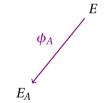
Ε

- A prime p such that $p+1 = \ell_A^n \ell_B^m$
- A supersingular elliptic curve E with $\ell^n_A\ell^m_B$ points
- A point R_A chosen randomly in $E[\ell_A^n]$

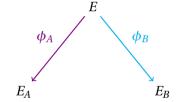
- A prime p such that $p+1 = \ell_A^n \ell_B^m$
- A supersingular elliptic curve E with $\ell_A^n \ell_B^m$ points
- A point R_A chosen randomly in $E[\ell_A^n]$

 $\longrightarrow (m_A, n_A) \in \{1, \dots, \ell_A^n\}^2 \text{ random},$ $R_A = m_A P_A + n_A Q_A \text{ for } \langle P_A, Q_A \rangle = E\left[\ell_A^n\right]$ Ε

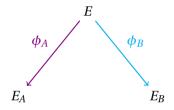
- A prime p such that $p+1 = \ell_A^n \ell_B^m$
- A supersingular elliptic curve E with $\ell_A^n \ell_B^m$ points
- A point R_A chosen randomly in $E[\ell_A^n]$ $\longrightarrow (m_A, n_A) \in \{1, \dots, \ell_A^n\}^2$ random, $R_A = m_A P_A + n_A Q_A$ for $\langle P_A, Q_A \rangle = E[\ell_A^n]$ \implies the curve $E_A = E/\langle R_A \rangle$ and $\phi_A : E \to E_A$



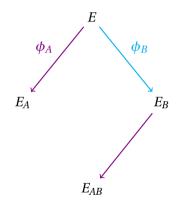
- A prime p such that $p+1 = \ell_A^n \ell_B^m$
- A supersingular elliptic curve E with $\ell_A^n \ell_B^m$ points
- A point R_A chosen randomly in $E[\ell_A^n]$ $\longrightarrow (m_A, n_A) \in \{1, \dots, \ell_A^n\}^2$ random, $R_A = m_A P_A + n_A Q_A$ for $\langle P_A, Q_A \rangle = E[\ell_A^n]$ \implies the curve $E_A = E/\langle R_A \rangle$ and $\phi_A : E \to E_A$



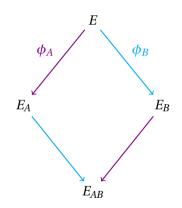
• A point $R_B = m_B P_B + n_B Q_B$ random in $E[\ell_B^m] = \langle P_B, Q_B \rangle$, the curve $E_B = E/\langle R_B \rangle$ and $\phi_B : E \to E_B$ • Bob sends $(E_B, \phi_B(P_A), \phi_B(Q_A))$ where $\langle \phi_B(P_A), \phi_B(Q_A) \rangle = E_B[\ell_A^n]$



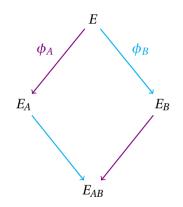
- Bob sends $(E_B, \phi_B(P_A), \phi_B(Q_A))$ where $\langle \phi_B(P_A), \phi_B(Q_A) \rangle = E_B[\ell_A^n]$
- Alice computes $E_{AB} = E_B / \langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle$



- Bob sends $(E_B, \phi_B(P_A), \phi_B(Q_A))$ where $\langle \phi_B(P_A), \phi_B(Q_A) \rangle = E_B[\ell_A^n]$
- Alice computes $E_{AB} = E_B / \langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle$
- Bob computes $E_{BA} = E_A / \langle m_B \phi_A(P_B) + n_B \phi_A(Q_B) \rangle$

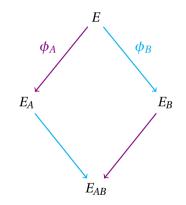


- Bob sends $(E_B, \phi_B(P_A), \phi_B(Q_A))$ where $\langle \phi_B(P_A), \phi_B(Q_A) \rangle = E_B[\ell_A^n]$
- Alice computes $E_{AB} = E_B / \langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle$
- Bob computes $E_{BA} = E_A / \langle m_B \phi_A(P_B) + n_B \phi_A(Q_B) \rangle$
- $E_{AB} \simeq E/\langle R_A, R_B \rangle \simeq E_{BA}$ so $j(E_{AB}) = j(E_{BA})$



- Bob sends $(E_B, \phi_B(P_A), \phi_B(Q_A))$ where $\langle \phi_B(P_A), \phi_B(Q_A) \rangle = E_B[\ell_A^n]$
- Alice computes $E_{AB} = E_B / \langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle$
- Bob computes $E_{BA} = E_A / \langle m_B \phi_A(P_B) + n_B \phi_A(Q_B) \rangle$
- $E_{AB} \simeq E/\langle R_A, R_B \rangle \simeq E_{BA}$ so $j(E_{AB}) = j(E_{BA})$

 $\implies j(E_{AB})$ secret shared by Alice and Bob



(:)

Given two isogenous curves E_1 and E_2 , find an isogeny between them of degree ℓ_A^n .

Given two isogenous curves E_1 and E_2 , find an isogeny between them of degree ℓ_A^n .

• Equivalent to find a path of fixed length in the isogeny graph

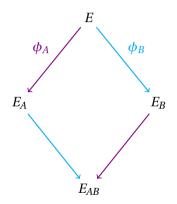
Given two isogenous curves E_1 and E_2 , find an isogeny between them of degree ℓ_A^n .

- Equivalent to find a path of fixed length in the isogeny graph
- Brute-force attack in $O(\ell_A^n) \approx O(\sqrt{p})$

Given two isogenous curves E_1 and E_2 , find an isogeny between them of degree ℓ_A^n .

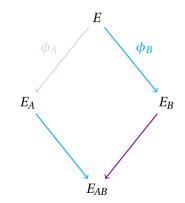
- Equivalent to find a path of fixed length in the isogeny graph
- Brute-force attack in $O(\ell_A^n) \approx O(\sqrt{p})$
- Claw finding: Find a collision in $O(\ell_A^{\frac{n}{2}}) \approx O(\sqrt[4]{p})$

• Alice uses a static private key (m_A, n_A)

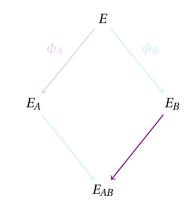


• Alice uses a static private key (m_A, n_A)

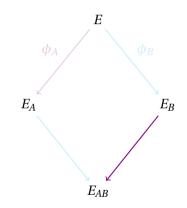
 \implies E_A and ϕ_A can be precomputed



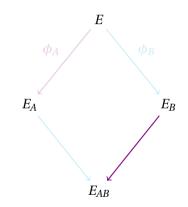
- Alice uses a static private key (m_A, n_A) $\implies E_A$ and ϕ_A can be precomputed
- The attacker plays the role of Bob



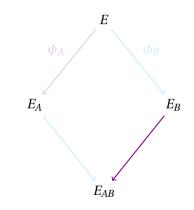
- Alice uses a static private key (m_A, n_A) $\implies E_A$ and ϕ_A can be precomputed
- The attacker plays the role of Bob
- Focus on the isogeny from E_B to $E_B/\langle m_A P'_A + n_A Q'_A \rangle$, where $P'_A = \phi_B(P_A)$ and $Q'_A = \phi_B(Q_A)$



- Alice uses a static private key (m_A, n_A) $\implies E_A$ and ϕ_A can be precomputed
- The attacker plays the role of Bob
- Focus on the isogeny from E_B to $E_B/\langle m_A P'_A + n_A Q'_A \rangle$, where $P'_A = \phi_B(P_A)$ and $Q'_A = \phi_B(Q_A)$
- Previous active attack [GPST16]:
 - Idea: Provide dishonest points $(\tilde{P}_A, \tilde{Q}_A)$ instead of (P'_A, Q'_A)



- Alice uses a static private key (m_A, n_A) $\implies E_A$ and ϕ_A can be precomputed
- The attacker plays the role of Bob
- Focus on the isogeny from E_B to $E_B/\langle m_A P'_A + n_A Q'_A \rangle$, where $P'_A = \phi_B(P_A)$ and $Q'_A = \phi_B(Q_A)$
- Previous active attack [GPST16]:
 - Idea: Provide dishonest points $(\tilde{P}_A, \tilde{Q}_A)$ instead of (P'_A, Q'_A)
 - Countermeasure: Validation method verifies the correctness of the inputs (Fujisaki-Okamoto transform)



• Degree
$$\ell_A^n$$
: Vélu's formulae $\Rightarrow O(\ell_A^n)$

 \bigcirc

• Degree
$$\ell_A^n$$
: Vélu's formulae $\Rightarrow O(\ell_A^n)$

• Decompose and iterate
$$\Rightarrow n \cdot O(\ell_A)$$

$$E_B = E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n = E_{AB}$$

 \bigcirc

 \odot

where each
$$\rightarrow$$
 is a degree- ℓ_A isogeny

• Degree
$$\ell_A^n$$
: Vélu's formulae $\Rightarrow O(\ell_A^n)$

• Decompose and iterate
$$\Rightarrow n \cdot O(\ell_A)$$

$$E_B = E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n = E_{AB}$$

 $(\mathbf{\hat{x}})$

where each \rightarrow is a degree- ℓ_A isogeny

•
$$R_0 = m_A P'_A + n_A Q'_A$$
 and for $1 \le k \le n - 1$,
 $E_{k+1} = E_k / \langle \ell_A^{n-k-1} R_k \rangle \qquad \phi_{k+1} : E_k \to E_{k+1} \qquad R_{k+1} = \phi_{k+1}(R_k)$

• Degree
$$\ell_A^n$$
: Vélu's formulae $\Rightarrow O(\ell_A^n)$

• Decompose and iterate
$$\Rightarrow n \cdot O(\ell_A)$$

$$E_B = E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n = E_{AB}$$

 (\mathbf{x})

where each \rightarrow is a degree- ℓ_A isogeny

•
$$R_0 = m_A P'_A + n_A Q'_A$$
 and for $1 \le k \le n - 1$,
 $E_{k+1} = E_k / \langle \ell_A^{n-k-1} R_k \rangle$ $\phi_{k+1} : E_k \to E_{k+1}$ $R_{k+1} = \phi_{k+1}(R_k)$
• $E_n = E_{AB} = E_B / \langle R_0 \rangle$ and $\phi = \phi_n \circ \cdots \circ \phi_1$

• Introduced for pairing-based cryptography

Used recently in the context of lattice-based signature schemes

• Introduced for pairing-based cryptography

Used recently in the context of lattice-based signature schemes

• Inject a fault that induces an early-abort in the loop

• Introduced for pairing-based cryptography

Used recently in the context of lattice-based signature schemes

- Inject a fault that induces an early-abort in the loop
- Proven feasible in practice [Blömer et al.]

• Introduced for pairing-based cryptography

Used recently in the context of lattice-based signature schemes

- Inject a fault that induces an early-abort in the loop
- Proven feasible in practice [Blömer et al.]
- Implementations of SIDH on embedded devices already exist

• Need an oracle to compare Alice's outputs with what the attacker computes

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

- Guess strategy: first step, k = 1
 - if m_a is even, then Ker $\phi_1 = \langle 2^{n-1} Q'_A \rangle$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

- Guess strategy: first step, k = 1
 - if m_a is even, then Ker $\phi_1 = \langle 2^{n-1} Q'_A \rangle$

• if n_a is even, then Ker $\phi_1 = \langle 2^{n-1} P'_A \rangle$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

- Guess strategy: first step, k = 1
 - if m_a is even, then Ker $\phi_1 = \langle 2^{n-1} Q'_A \rangle$

• if n_a is even, then Ker $\phi_1 = \langle 2^{n-1} P'_A \rangle$

• if both are odd, then Ker $\phi_1 = \langle 2^{n-1}(P'_A + Q'_A) \rangle$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

• if
$$m_a$$
 is even, then Ker $\phi_1 = \langle 2^{n-1}Q'_A \rangle$
 $\implies (m_A, n_A)$ equivalent to $(a, 1)$ for $a = \frac{m_A}{n_A}$ and a even

• if
$$n_a$$
 is even, then Ker $\phi_1 = \langle 2^{n-1} P'_A \rangle$

• if both are odd, then Ker
$$\phi_1 = \langle 2^{n-1}(P'_A + Q'_A) \rangle$$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

• if
$$m_a$$
 is even, then Ker $\phi_1 = \langle 2^{n-1}Q'_A \rangle$
 $\implies (m_A, n_A)$ equivalent to $(a, 1)$ for $a = \frac{m_A}{n_A}$ and a even

• if
$$n_a$$
 is even, then Ker $\phi_1 = \langle 2^{n-1} P'_A \rangle$
 $\implies (m_A, n_A)$ equivalent to $(1, a)$ for $a = \frac{n_A}{m_A}$ and a even

• if both are odd, then Ker $\phi_1 = \langle 2^{n-1}(P'_A + Q'_A) \rangle$

- Need an oracle to compare Alice's outputs with what the attacker computes
- After k iterations, Alice has computed the intermediate curve

$$E_k = E_B / \langle 2^{n-k} (m_A P'_A + n_A Q'_A) \rangle$$

• if
$$m_a$$
 is even, then Ker $\phi_1 = \langle 2^{n-1}Q'_A \rangle$
 $\implies (m_A, n_A)$ equivalent to $(a, 1)$ for $a = \frac{m_A}{n_A}$ and a even

• if
$$n_a$$
 is even, then Ker $\phi_1 = \langle 2^{n-1} P'_A \rangle$
 $\implies (m_A, n_A)$ equivalent to $(1, a)$ for $a = \frac{n_A}{m_A}$ and a even

• if both are odd, then Ker $\phi_1 = \langle 2^{n-1}(P_A' + Q_A') \rangle$

$$\implies$$
 (m_A , n_A) equivalent to (1, a) for $a = \frac{n_A}{m_A}$ and a odd

• Subsequent steps: we assume the key of the form (1, *a*)

- Subsequent steps: we assume the key of the form (1, *a*)
- We know the k-1 least significant bits

 $\ell_A = 2$

• Subsequent steps: we assume the key of the form (1, *a*)

- We know the k-1 least significant bits
- The *k*-th bit is either 0 or 1, *i.e.*,

$$E_{k} = E_{B} / \left\langle 2^{n-k} \left(P_{A}' + (a \mod 2^{k-1}) Q_{A}' \right) \right\rangle \quad \text{or} \quad E_{k} = E_{B} / \left\langle 2^{n-k} \left(P_{A}' + (a \mod 2^{k-1} + 2^{k-1}) Q_{A}' \right) \right\rangle$$

 $\ell_A = 2$

• Subsequent steps: we assume the key of the form (1, *a*)

- We know the k-1 least significant bits
- The *k*-th bit is either 0 or 1, *i.e.*,

$$E_{k} = E_{B} / \left\langle 2^{n-k} \left(P_{A}' + (a \mod 2^{k-1}) Q_{A}' \right) \right\rangle \quad \text{or} \quad E_{k} = E_{B} / \left\langle 2^{n-k} \left(P_{A}' + (a \mod 2^{k-1} + 2^{k-1}) Q_{A}' \right) \right\rangle$$

• Make a guess and recover the k-th bit of a

 $\ell_A = 2$

• Subsequent steps: we assume the key of the form (1, a)

- We know the k-1 least significant bits
- The k-th bit is either 0 or 1, *i.e.*,

$$E_{k} = E_{B} / \left\langle 2^{n-k} \left(P_{A}' + (a \mod 2^{k-1}) Q_{A}' \right) \right\rangle \quad \text{or} \quad E_{k} = E_{B} / \left\langle 2^{n-k} \left(P_{A}' + (a \mod 2^{k-1} + 2^{k-1}) Q_{A}' \right) \right\rangle$$

- Make a guess and recover the k-th bit of a
- Conclusion: full-key recovery by iterating this process

• n bits recovered in n interactions with the victim $\implies n$ faults injected

- n bits recovered in n interactions with the victim $\implies n$ faults injected
- if the success probability μ of the fault injection is not 1,

- n bits recovered in n interactions with the victim $\implies n$ faults injected
- if the success probability μ of the fault injection is not 1,
 - about $\frac{n}{\mu}$ faults injected if the success can be detected

- n bits recovered in n interactions with the victim $\implies n$ faults injected
- if the success probability μ of the fault injection is not 1,
 - about $\frac{n}{\mu}$ faults injected if the success can be detected
 - about $\frac{2n}{\mu}$ otherwise

- n bits recovered in n interactions with the victim $\implies n$ faults injected
- ullet if the success probability μ of the fault injection is not 1,
 - about $\frac{n}{\mu}$ faults injected if the success can be detected
 - about $\frac{2n}{\mu}$ otherwise
- Alternative with less faults assuming a stronger oracle

Bedankt

Alexandre Gélin, Benjamin Wesolowski Loop-abort faults on supersingular isogeny cryptosystems