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Supersingular-Isogeny Public-key Cryptography

Introduced by Jao, De Feo, and Plût in 2011

Based on the same problem as the hash function of [CLG06]

The isogeny graph of a supersingular elliptic curve:
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Supersingular elliptic curves

Definition
A supersingular elliptic curve is a curve E defined over Fpk such that

#E
(
Fpk

)
= 1 mod p.

Interesting properties:

All supersingular elliptic curves can be defined over Fp2

About p
12 supersingular elliptic curves, up to isomorphism
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Isogenies

Definition
An isogeny φ between two elliptic curves E1 and E2 is a surjective group homomorphism
with a finite kernel. The degree is defined by

degφ= #Ker φ.

Interesting properties:

G ⊂ E1 =⇒ a unique E2 and φ such that

φ : E1 → E2 and Ker φ= G

E2 = E/G is obtained in O
(
degφ

)
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Key-Exchange Protocol

A prime p such that p+1 = `n
A`

m
B

A supersingular elliptic curve E with `n
A`

m
B points

A point RA chosen randomly in E
[
`n

A

]

−→ (mA,nA) ∈ {1, . . . ,`n
A}2 random,

RA = mAPA +nAQA for 〈PA,QA〉 = E
[
`n

A

]
=⇒ the curve EA = E/〈RA〉 and φA : E → EA

A point RB = mBPB +nBQB random in E
[
`m

B

]= 〈PB,QB〉,
the curve EB = E/〈RB〉 and φB : E → EB

E

EA EB

φA φB
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Key-Exchange Protocol

Bob sends
(
EB,φB(PA),φB(QA)

)
where 〈φB(PA),φB(QA)〉 = EB[`n

A]

Alice computes EAB = EB/〈mAφB(PA)+nAφB(QA)〉

Bob computes EBA = EA/〈mBφA(PB)+nBφA(QB)〉

EAB ' E/〈RA,RB〉 ' EBA so j(EAB) = j(EBA)

=⇒ j(EAB) secret shared by Alice and Bob ,

E

EA EB

EAB

φA φB
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Position of the problem

Path-finding problem
Given two isogenous curves E1 and E2, find an isogeny between them of degree `n

A.

Equivalent to find a path of fixed length in the isogeny graph

Brute-force attack in O
(
`n

A

)≈ O
(p

p
)

Claw finding: Find a collision in O
(
`

n
2
A

)
≈ O

(
4
p

p
)
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Attack framework

Alice uses a static private key (mA,nA)

=⇒ EA and φA can be precomputed

The attacker plays the role of Bob

Focus on the isogeny from EB to EB/〈mAP′
A +nAQ′

A〉,
where P′

A =φB(PA) and Q′
A =φB(QA)

Previous active attack [GPST16]:

Idea: Provide dishonest points (P̃A,Q̃A) instead of (P′
A,Q′

A)

Countermeasure: Validation method verifies the correctness
of the inputs (Fujisaki-Okamoto transform)

E

EA EB

EAB

φA

φA

φB

φB
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How is computed the isogeny ?

Degree `n
A: Vélu’s formulae ⇒ O

(
`n

A

) /

Decompose and iterate ⇒ n ·O (`A) ,
EB = E0 → E1 → ··· → En−1 → En = EAB

where each → is a degree-`A isogeny

R0 = mAP′
A +nAQ′

A and for 1 ≤ k ≤ n−1,

Ek+1 = Ek/〈`n−k−1
A Rk〉 φk+1 : Ek → Ek+1 Rk+1 =φk+1(Rk)

En = EAB = EB/〈R0〉 and φ=φn ◦ · · · ◦φ1
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Loop-abort fault attacks

Introduced for pairing-based cryptography

Used recently in the context of lattice-based signature schemes

Inject a fault that induces an early-abort in the loop

Proven feasible in practice [Blömer et al.]

Implementations of SIDH on embedded devices already exist
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The attack `A = 2

Need an oracle to compare Alice’s outputs with what the attacker computes

After k iterations, Alice has computed the intermediate curve

Ek = EB/〈2n−k(mAP′
A +nAQ′

A)〉
Guess strategy: first step, k = 1

if ma is even, then Ker φ1 = 〈2n−1Q′
A〉

=⇒ (mA,nA) equivalent to (a,1) for a = mA
nA

and a even

if na is even, then Ker φ1 = 〈2n−1P′
A〉

=⇒ (mA,nA) equivalent to (1,a) for a = nA
mA

and a even

if both are odd, then Ker φ1 = 〈2n−1(P′
A +Q′

A)〉

=⇒ (mA,nA) equivalent to (1,a) for a = nA
mA

and a odd
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=⇒ (mA,nA) equivalent to (a,1) for a = mA
nA

and a even

if na is even, then Ker φ1 = 〈2n−1P′
A〉

=⇒ (mA,nA) equivalent to (1,a) for a = nA
mA

and a even

if both are odd, then Ker φ1 = 〈2n−1(P′
A +Q′

A)〉

=⇒ (mA,nA) equivalent to (1,a) for a = nA
mA

and a odd
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The attack `A = 2

Subsequent steps: we assume the key of the form (1,a)

We know the k−1 least significant bits

The k-th bit is either 0 or 1, i.e.,

Ek = EB
/〈

2n−k
(
P′

A + (a mod 2k−1)Q′
A

)〉
or Ek = EB

/〈
2n−k

(
P′

A + (a mod 2k−1 +2k−1)Q′
A

)〉
Make a guess and recover the k-th bit of a

Conclusion: full-key recovery by iterating this process
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Analysis

n bits recovered in n interactions with the victim =⇒ n faults injected

if the success probability µ of the fault injection is not 1,

about n
µ faults injected if the success can be detected

about 2n
µ otherwise

Alternative with less faults assuming a stronger oracle
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Thanks

Bedankt
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