Parametrizations for Families of ECM-Friendly Curves

Alexandre Gélin Thorsten Kleinjung Arjen K. Lenstra

Laboratoire d'Informatique de Paris 6 - Sorbonne Universités UPMC

École Polytechnique Fédérale de Lausanne, EPFL IC LACAL, Switzerland

ISSAC 2017 – Kaiserslautern 2017/07/28

• Problem: To factor a composite number N

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985
 - Best strategy for small factors p

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985
 - Best strategy for small factors p
 - Part of the NFS

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985
 - Best strategy for small factors p
 - Part of the NFS
- How does it work? We perform arithmetic operations mod N

• Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N
- Solution: ECM finds a factor p of N when

 $k \cdot P = \mathcal{O}$ on $E_p = E \mod p$

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N
- Solution: ECM finds a factor p of N when

 $k \cdot P = \mathcal{O}$ on $E_p = E \mod p$

k is a multiple of the order of P over E_n

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N
- Solution: ECM finds a factor p of N when

 $k \cdot P = \mathcal{O}$ on $E_p = E \mod p$

k is a multiple of the order of P over E_p

• Goal: Find curves E such that $\#E_p \mid k$ for a lot of primes p

• Solution: We want $\#E_p$ to be smooth and we choose $k = \prod p_i^{e_i}$

- Solution: We want $\#E_p$ to be smooth and we choose $k = \prod p_i^{e_i}$
- New goal: To look for curves with smooth cardinalities

- Solution: We want $\#E_p$ to be smooth and we choose $k = \prod p_i^{e_i}$
- New goal: To look for curves with smooth cardinalities
- Fact: The torsion group of E over **Q** injects in every E_p

- Solution: We want $\#E_p$ to be smooth and we choose $k = \prod p_i^{e_i}$
- New goal: To look for curves with smooth cardinalities
- Fact: The torsion group of E over **Q** injects in every E_p
- Mazur's theorem: A torsion group over Q is isomorphic to

 $\mathbb{Z}/n\mathbb{Z}$ with $1 \le n \le 10$ or n = 12, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$ with $1 \le n \le 4$

• Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$

- Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$
- GMP-ECM uses Montgomery curves $By^2 = x^3 + Ax^2 + x$

- Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$
- GMP-ECM uses Montgomery curves $By^2 = x^3 + Ax^2 + x$
- 2008: Twisted Edwards curves ax² + y² = 1 + dx²y²
 Torsion groups: 12, 2 × 8, or smaller than 8

- Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$
- GMP-ECM uses Montgomery curves $By^2 = x^3 + Ax^2 + x$
- 2008: Twisted Edwards curves $ax^2 + y^2 = 1 + dx^2y^2$ Torsion groups: 12, 2 × 8, or smaller than 8
- a=-1 Twisted Edwards curves: gain a field multiplication
 Torsion groups: 2 × 4, 6, 8 or smaller than 4

Characterization of Z/12Z curves

If $u \in \mathbf{Q} \setminus \{0, \pm 1\}$ then the Edwards curve $x^2 + y^2 = 1 + dx^2y^2$ over \mathbf{Q} , where

$$f_{x_3} = \frac{u^2 - 1}{u^2 + 1}, \quad y_3 = -\frac{(u - 1)^2}{u^2 + 1}, \quad d = \frac{(u^2 + 1)^3(u^2 - 4u + 1)}{(u - 1)^6(u + 1)^2}$$

has (x_3, y_3) as a point of order 3 and has **Q**-torsion group isomorphic to **Z**/12**Z**. Conversely, every Edwards curve over **Q** with a point of order 3 arises in this way.

Characterization of Z/12Z curves

If $u \in \mathbf{Q} \setminus \{0, \pm 1\}$ then the Edwards curve $x^2 + y^2 = 1 + dx^2y^2$ over \mathbf{Q} , where

$$f_{x_3} = \frac{u^2 - 1}{u^2 + 1}, \quad y_3 = -\frac{(u - 1)^2}{u^2 + 1}, \quad d = \frac{(u^2 + 1)^3(u^2 - 4u + 1)}{(u - 1)^6(u + 1)^2}$$

has (x_3, y_3) as a point of order 3 and has **Q**-torsion group isomorphic to **Z**/12**Z**. Conversely, every Edwards curve over **Q** with a point of order 3 arises in this way.

Montgomery [Mon87]

Let $(s, t) \notin \{(0, 0), (-2, \pm 4), (6, \pm 12)\}$ be a rational point on the curve $T^2 = S^3 - 12S$. Define $d = -\frac{(s-2)^3(s+6)^3(s^2 - 12s - 12)}{1024s^2t^2}.$

Then the Edwards curve $E: x^2 + y^2 = 1 + dx^2y^2$ has **Q**-torsion group isomorphic to **Z**/12**Z** and has a non-torsion point (x_1, y_1) where

$$x_1 = \frac{8t(s^2 + 12)}{(s-2)(s+6)(s^2 + 12s - 12)} \quad \text{and} \quad y_1 = -\frac{4s(s^2 - 12s - 12)}{(s-2)(s+6)(s^2 - 12)}.$$

Characterization

Characterization

If $e \in \mathbf{Q} \setminus \{0, \pm 1\}$ then the a = -1 Twisted Edwards curve $-x^2 + y^2 = 1 + dx^2y^2$ over \mathbf{Q} , where $d = -e^4$ has \mathbf{Q} -torsion group isomorphic tp $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$. Conversely, every Edwards curve over \mathbf{Q} with such a torsion group arises in this way.

• Galois properties studied in [BBBKM12]

Characterization

- Galois properties studied in [BBBKM12]
- for a generic d, P_8 splits into 3 irred. factors deg. 4, 4, 16

Characterization

- Galois properties studied in [BBBKM12]
- for a generic d, P_8 splits into 3 irred. factors deg. 4, 4, 16
- for $d = -e^4$, the deg-16 pol. splits into 3 factors of deg. 4, 4, 8

a = -1 Twisted Edwards curve with torsion $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$

Characterization

- Galois properties studied in [BBBKM12]
- for a generic d, P_8 splits into 3 irred. factors deg. 4, 4, 16
- for $d = -e^4$, the deg-16 pol. splits into 3 factors of deg. 4, 4, 8

generic e	$e = g^2$	$e = \frac{g^2}{2}$	$e = \frac{2g^2 + 2g + 1}{2g + 1}$	$e = \frac{g - \frac{1}{g}}{2}$
4	4	2,2	4	2,2
4	4	4	4	2,2
8	4,4	8	4,4	4

Familias	Curves	Average valuation of 2			Average valuation of 3		
rammes		n	Th.	Exp.	n	Th.	Exp.
Suyama	$\sigma = 12$	2	$\frac{10}{3} \approx 3.333$	3.331	1	$\frac{27}{16} \approx 1.688$	1.689
Suyama-11	$\sigma = 11$	2	$\frac{11}{3} \approx 3.667$	3.669	1	$\frac{27}{16} \approx 1.688$	1.687
Suyama- $\frac{9}{4}$	$\sigma = \frac{9}{4}$	3	$\frac{11}{3} \approx 3.667$	3.664	1	$\frac{27}{16} \approx 1.688$	1.687
$\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$	$E_{-11^{4}}$	3	$\frac{14}{3} \approx 4.667$	4.666	1*	$\frac{87}{128} \approx 0.680$	0.679
$e = \frac{g - \frac{1}{g}}{2}$	$E_{-(\frac{77}{36})^4}$	3	$\frac{16}{3} \approx 5.333$	5.332	1^*	$\frac{87}{128} \approx 0.680$	0.679
$e = g^2$	$E_{-9^{4}}$	3	$\frac{29}{6} \approx 4.833$	4.833	1^*	$\frac{87}{128} \approx 0.680$	0.680
$e = \frac{g^2}{2}$	$E_{-\left(\frac{81}{8}\right)^4}$	3	$\frac{29}{6} \approx 4.833$	4.831	1^*	$\frac{87}{128} \approx 0.680$	0.679
$e = \frac{2g^2 + 2g + 1}{2g + 1}$	$E_{-(\frac{5}{3})^4}$	3	$\frac{29}{6} \approx 4.833$	4.833	1*	$\frac{87}{128} \approx 0.680$	0.679

TABLE 4. Experimental values (Exp.) are obtained with all primes below 2^{25} . The case $n = 1^*$ means that the Galois group is isomorphic to $GL_2(\mathbb{Z}/\pi\mathbb{Z})$.

Theorem

For nonzero
$$t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$$
 let $e_1 = \frac{3(t^2 - 1)}{8t}$,
 $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27}$ and $y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$.

Theorem

For nonzero
$$t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$$
 let $e_1 = \frac{3(t^2 - 1)}{8t}$,
 $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27}$ and $y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$.

Then (x_1, y_1) is a non-torsion point on the curve $-x^2 + y^2 = 1 - e_1^4 x^2 y^2$ with torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

• Eases the curves generation

Theorem

For nonzero
$$t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$$
 let $e_1 = \frac{3(t^2 - 1)}{8t}$,
 $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27}$ and $y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$.

- Eases the curves generation
- Allows to look for additional constraints

Theorem

For nonzero
$$t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$$
 let $e_1 = \frac{3(t^2 - 1)}{8t}$,
 $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27}$ and $y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$.

- Eases the curves generation
- Allows to look for additional constraints

$$e = \frac{2g^2 + 2g + 1}{2g + 1} \iff e^2 - 1$$
 is a square

Theorem

For nonzero
$$t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$$
 let $e_1 = \frac{3(t^2 - 1)}{8t}$,
 $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27}$ and $y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$.

- Eases the curves generation
- Allows to look for additional constraints

$$e = \frac{2g^2 + 2g + 1}{2g + 1} \iff e^2 - 1 \text{ is a square}$$
$$e = \frac{g - \frac{1}{g}}{2} \iff e^2 + 1 \text{ is a square}$$

Corollary

Consider the elliptic curve $y^2 = x^3 - 36x$ of rank one, with the point (-3,9) generating a non-torsion subgroup. For any point (*x*, *y*) on this curve and

$$t = \frac{x+6}{x-6}$$

the a=-1 twisted Edwards curve with torsion group isomorphic to $Z/2Z \times Z/4Z$ defined as in the prior Theorem belongs to family $e=g^2$ and has positive rank over **Q**.

Proof

$$e_1 = \frac{3(t^2 - 1)}{8t} = \frac{9x}{x^2 - 36} = \left(\frac{3x}{y}\right)^2$$

• Goal: Find more rational parametrizations

• Goal: Find more rational parametrizations

• Hope to find one that matches with the best subfamily $e = \frac{g - \frac{1}{g}}{2}$

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

$$-x^{2}+y^{2} = 1 - e^{4}x^{2}y^{2} \quad \Longleftrightarrow \quad y^{2} = \frac{1+x^{2}}{1+e^{4}x^{2}} \quad \Longleftrightarrow \quad e^{4}x^{4} + (1+e^{4})x^{2} + 1 = \Box$$

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

$$-x^{2}+y^{2} = 1 - e^{4}x^{2}y^{2} \quad \Longleftrightarrow \quad y^{2} = \frac{1+x^{2}}{1+e^{4}x^{2}} \quad \Longleftrightarrow \quad e^{4}x^{4} + (1+e^{4})x^{2} + 1 = \Box$$

$$x = \frac{u(e)}{v(e)} \implies e^4 u^4 + (1 + e^4) u^2 v^2 + v^4 \text{ must be a square}$$

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

$$-x^{2}+y^{2} = 1 - e^{4}x^{2}y^{2} \quad \Longleftrightarrow \quad y^{2} = \frac{1+x^{2}}{1+e^{4}x^{2}} \quad \Longleftrightarrow \quad e^{4}x^{4} + (1+e^{4})x^{2} + 1 = \Box$$

$$x = \frac{u(e)}{v(e)} \implies e^4 u^4 + (1+e^4)u^2v^2 + v^4$$
 must be a square

• Large number of tries for small polynomials

• Square-free part of degree ≥ 6 : hyperelliptic curves $\textcircled{\bullet}$

- Square-free part of degree ≥ 6 : hyperelliptic curves $\textcircled{\bullet}$
- Square-free part of degree 2: lead to the rational parametrization

• Square-free part of degree ≥ 6 : hyperelliptic curves $\textcircled{\bullet}$

- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves

• Square-free part of degree ≥ 6 : hyperelliptic curves 🙁

- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves

• Square-free part of degree ≥ 6 : hyperelliptic curves 🙁

- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

- Square-free part of degree ≥ 6 : hyperelliptic curves 🙁
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

• Square-free part of degree ≥ 6 : hyperelliptic curves 🙁

- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

• Choosing
$$e = \frac{3}{4k}$$
, the denominator becomes $\left(\frac{4k^2+9}{16k^2}\right)^2$

• Square-free part of degree ≥ 6 : hyperelliptic curves 🙁

- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

• Choosing $e = \frac{3}{4k}$, the denominator becomes $\left(\frac{4k^2+9}{16k^2}\right)^2$

• If $k^2 + 1$ is a square, then (x, y) is on $E: -x^2 + y^2 = 1 - (\frac{3}{4L})^4 x^2 y^2$

• Square-free part of degree ≥ 6 : hyperelliptic curves 🙁

- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

- Choosing $e = \frac{3}{4k}$, the denominator becomes $\left(\frac{4k^2+9}{16k^2}\right)^2$
- If $k^2 + 1$ is a square, then (x, y) is on $E: -x^2 + y^2 = 1 (\frac{3}{4L})^4 x^2 y^2$
- Results in infinitely many curves

Our results [GKL17]

Theorem

For $1 \le j \le 7$, the point (x_j, y_j) is a non-torsion point on the curve defined by $-x^2 + y^2 = 1 - e_j^4 x^2 y^2$:

j	e_j	x_j	\mathcal{Y}_{j}
1	$\frac{3(t^2-1)}{8t}$	$\frac{128t^3}{27t^6+63t^4-63t^2-27}$	$\frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$
2	$\frac{t^2+2t+4}{2t+2}$	$\frac{2t^3 + 2t^2 - 8t - 8}{t^4 + 6t^3 + 12t^2 + 16t}$	$\frac{2t^5 + 14t^4 + 40t^3 + 44t^2 + 32t + 16}{t^6 + 4t^5 + 10t^4 + 20t^3 + 40t^2 + 64t + 64}$
3	$\frac{t^2+4}{3t}$	$\frac{12t^2 - 24}{t^4 - 4t^2 - 32}$	$\frac{3t^6 - 12t^4 + 120t^2}{5t^6 + 12t^4 + 128}$
4	$\frac{t^2+4t}{t^2-4}$	$\frac{2t^3 + 2t^2 - 8t - 8}{t^4 + 6t^3 + 12t^2 + 16t}$	$\frac{t^6 + 6t^5 + 10t^4 - 16t^3 - 48t^2 - 32t - 32}{t^6 + 6t^5 + 10t^4 + 16t^3 + 48t^2 + 64t}$
5	$\frac{4t^4 - 1024}{t^5 + 512t}$	$\frac{96t^6 + 49152t^2}{t^8 - 1280t^4 + 262144}$	$\frac{t^{12} + 3840t^8 + 1966080t^4 + 134217728}{t^{12} - 768t^8 + 786432t^4 - 167772160}$
6	$\frac{t^3+8t}{4t^2+8}$	$\frac{12t^2 + 24}{t^4 + 4t^2 - 32}$	$\frac{4t^6 + 24t^4 + 192t^2 + 320}{5t^6 + 48t^4 + 96t^2 + 256}$
7	$\frac{t^3-8t}{4t^2-8}$	$\frac{12t^2 - 24}{t^4 - 4t^2 - 32}$	$\frac{4t^6 - 24t^4 + 192t^2 - 320}{5t^6 - 48t^4 + 96t^2 - 256}$

Our results [GKL17]

Corollary

For $1 \le j \le 4$ let (e_j, x_j, y_j) be functions of t as in the previous theorem. For each case below the elliptic curve E has rank one, and for each point (x, y) on E the pair (x_j, y_j) is a non-torsion point on the curve defined by $-x^2 + y^2 = 1 - e_j^4 x^2 y^2$:

family	j	Ε	t	Proof
(<i>i</i>)	1	$y^2 = x^3 - 36x$	$\frac{x+6}{x-6}$	$e_1 = \left(\frac{3x}{y}\right)^2$
(<i>ii</i>)	2	$y^2 = x^3 + 3x$	x-1	$e_2 = \frac{1}{2} \left(\frac{y}{x}\right)^2$
(<i>ii</i>)	3	$y^2 = x^3 + 9x$	$\frac{2x}{3}$	$e_3 = \frac{1}{2} \left(\frac{2y}{3x}\right)^2$
(<i>iii</i>)	3	$y^2 = x^3 - x^2 - 64x + 64$	$\frac{8x-8}{y}$	$e_3^2 - 1 = \left(\frac{x^2 - 2x + 64}{6y}\right)^2$
(<i>iii</i>)	4	$y^2 = x^3 - 12x$	$\frac{x-2}{2}$	$e_4^2 - 1 = \left(\frac{4y^2}{x^2 - 4x - 12}\right)^2$
(<i>iv</i>)	4	$y^2 = x^3 - x^2 - 9x + 9$	$\frac{4x+4}{y-4}$	$e_4^2 + 1 = \left(\frac{x^4 + 4x^3 + 14x^2 - 108x + 153}{x^4 - 4x^3 - 18x^2 - 16xy + 12x + 48y + 9}\right)^2$

Our results [GKL17]

Corollary

For $1 \le j \le 4$ let (e_j, x_j, y_j) be functions of t as in the previous theorem. For each case below the elliptic curve E has rank one, and for each point (x, y) on E the pair (x_j, y_j) is a non-torsion point on the curve defined by $-x^2 + y^2 = 1 - e_j^4 x^2 y^2$:

family	j	Ε	t	Proof
(<i>i</i>)	1	$y^2 = x^3 - 36x$	$\frac{x+6}{x-6}$	$e_1 = \left(\frac{3x}{y}\right)^2$
(<i>ii</i>)	2	$y^2 = x^3 + 3x$	x-1	$e_2 = \frac{1}{2} \left(\frac{y}{x}\right)^2$
(<i>ii</i>)	3	$y^2 = x^3 + 9x$	$\frac{2x}{3}$	$e_3 = \frac{1}{2} \left(\frac{2y}{3x}\right)^2$
(<i>iii</i>)	3	$y^2 = x^3 - x^2 - 64x + 64$	$\frac{8x-8}{y}$	$e_3^2 - 1 = \left(\frac{x^2 - 2x + 64}{6y}\right)^2$
(<i>iii</i>)	4	$y^2 = x^3 - 12x$	$\frac{x-2}{2}$	$e_4^2 - 1 = \left(\frac{4y^2}{x^2 - 4x - 12}\right)^2$
(<i>iv</i>)	4	$y^2 = x^3 - x^2 - 9x + 9$	$\frac{4x+4}{y-4}$	$e_4^2 + 1 = \left(\frac{x^4 + 4x^3 + 14x^2 - 108x + 153}{x^4 - 4x^3 - 18x^2 - 16xy + 12x + 48y + 9}\right)^2$

So we have a parametrization for the best subfamily $e = \frac{g - \frac{1}{g}}{2}$.

Effectiveness of our curves

b #p	φ_{α}	Q.	#1	average	#100	#1/	#1/	
	$^{\#}p$	66	62×4	(among	(among $\mathscr{C}_{[1]}, \mathscr{C}_{[2]}, \ldots, \mathscr{C}_{[100]})$			/#100
15	1612	1127	1049	1202	1155.4	1103	1.0665	1.0897
16	3030	1693	1564	1806	1737.3	1664	1.0667	1.0853
17	5709	3299	2985	3324	3197.9	3077	1.0075	1.0802
18	10749	6150	5529	6168	6020.0	5921	1.0029	1.0417
19	20390	10802	10200	10881	10723.8	10500	1.0073	1.0362
20	38635	16148	15486	16396	16197.7	15955	1.0153	1.0276
21	73586	24160	22681	24312	24003.3	23655	1.0062	1.0277
22	140336	48378	46150	48894	48515.6	48114	1.0106	1.0162
23	268216	83339	82743	85525	84840.0	84254	1.0262	1.0150
24	513708	193069	187596	193558	192825.7	191961	1.0025	1.0083
25	985818	318865	311864	320498	319154.8	317304	1.0051	1.0100
26	1894120	493470	480006	495082	493556.4	492364	1.0032	1.0055

Danke