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The Principal Ideal Problem

The Principal Ideal Problem (PIP) consists in finding a
generator of an ideal, assuming it is principal.
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The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.
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The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.

e Base of several cryptographical schemes ([SV10],[GGH13])
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The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.

e Base of several cryptographical schemes ([SV10],[GGH13])

@ Two distinct phases:

@ Given the Z-basis of the ideal a = (g), find a — not
necessarily short — generator g’ = g - u for a unit u.
@ From g’, find a short generator of the ideal.
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The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.

e Base of several cryptographical schemes ([SV10],[GGH13])

@ Two distinct phases:

@ Given the Z-basis of the ideal a = (g}, find a — not
necessarily short — generator g’ = g - u for a unit u.
@ From g’, find a short generator of the ideal.

Campbell, Groves, and Sheperd (2014) found a solution in polynomial
time for the second point for power-of-two cyclotomic fields.
Cramer, Ducas, Peikert, and Regev (2016) provided a proof and an
extension to prime-power cyclotomic fields.
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FHE scheme — Smart and Vercauteren PKC 2010

Key Generation:
@ Fix the security parameter N = 2",

@ Let F(X) = X" 4 1 be the polynomial defining the
cyclotomic field K = Q((an)-

Q Set G(X)=1+2-5(X),
for S(X) of degree N — 1 with coefficients in [—QW, QW],
such that the norm N ((G(¢an))) is prime.

Q Set g = G(Gan) € Ok.

@ Return the secret key sk = g and the public key
pk = HNF((g)).
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FHE scheme — Smart and Vercauteren PKC 2010

Key Generation:
@ Fix the security parameter N = 2",

@ Let F(X) = X" 4 1 be the polynomial defining the
cyclotomic field K = Q((an)-

Q Set G(X)=1+2-5(X),
for S(X) of degree N — 1 with coefficients in [—QW, QW],
such that the norm N ((G(¢an))) is prime.

Q Set g = G(Gan) € Ok.

@ Return the secret key sk = g and the public key
pk = HNF((g)).

Our goal: Recover the secret key from the public key.
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Outline of the algorithm

@ Perform a reduction from the cyclotomic field to its totally real
subfield, allowing to work in smaller dimension.

@ Then a g-descent makes the size of involved ideals decrease.

© Collect relations and run linear algebra to construct small
ideals and a generator.

@ Eventually run the derivation of the short generator from a
bigger one.
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Outline of the algorithm

@ Perform a reduction from the cyclotomic field to its totally real
subfield, allowing to work in smaller dimension.

@ Then a g-descent makes the size of involved ideals decrease.

© Collect relations and run linear algebra to construct small
ideals and a generator.

@ Eventually run the derivation of the short generator from a

bigger one.

All the complexities are expressed as a function of the field
discriminant Ag(en) = NN for N = 2n.
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Outline of the algorithm

@ Perform a reduction from the cyclotomic field to its totally real
subfield, allowing to work in smaller dimension.

@ Then a g-descent makes the size of involved ideals decrease.

© Collect relations and run linear algebra to construct small
ideals and a generator.

@ Eventually run the derivation of the short generator from a
bigger one.

All the complexities are expressed as a function of the field
discriminant AQ(CQN) = N¥, for N = 2™, For instance,

Liag (@) = 2V,
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity

@ Input: a Z-basisof Z=(u) and wu-u
@ Output: the generator u
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity

@ Input: a Z-basisof Z=(u) and wu-u
@ Output: the generator u

Problem: no information about g - g (g is the private key)
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity

@ Input: a Z-basisof Z=(u) and wu-u
@ Output: the generator u

Solution: we introduce u = N(g)gg—!
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity

@ Input: a Z-basisof Z=(u) and wu-u
@ Output: the generator u

Solution: we introduce u = N(g)gg—!

Z-basis of (g) == Z-basis of (u) and u - @ = N(g)?
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity
@ Input: a Z-basisof Z=(u) and wu-u
@ Output: the generator u

Solution: we introduce u = N(g)gg—!

Z-basis of (g) == Z-basis of (u) and u - @ = N(g)?

In the end, we get g - g~ ! and a Z-basis of
It =(g+g) CQC+¢)
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity
@ Input: a Z-basisof Z=(u) and wu-u
@ Output: the generator u

Solution: we introduce u = N(g)gg—!
Z-basis of (g) == Z-basis of (u) and u - @ = N(g)?

In the end, we get g - g~ ! and a Z-basis of
It =(g+g) CQC+¢)

Once we have a generator for Z+, we get one for Z by multiplying
by
1

1+g-g!
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
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2. The g-descent

It =a° Input ideal — Norm arbitrary large

Initial reduction — Norm: Lja,| (%)
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It =a° Input ideal — Norm arbitrary large

Initial reduction — L, (1)-smooth
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
a, a; \ a,. Initial reduction — L, (1)-smooth
a? a \ aZ First step — Norm: Lia,| (5)
@t o ) @,
|
o
al -1
all al2 \ ’ aiu
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
a, a; \ a,. Initial reduction — L, (1)-smooth
a? a2 \ a’, First step — L|a,| (2)-smooth
ai’ ﬂg \ ’ aiS
|
o
al -1
@ ) d,
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
a, a; \ a,. Initial reduction — L, (1)-smooth
a? a? a2, First step — L|a,| (2)-smooth
a al \ al, Second step — Norm: L (2)
|
o
al -1
all al2 \ ’ aiu
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
a, a; \ a,. Initial reduction — L, (1)-smooth
a? a? a2, First step — L|a,| (2)-smooth
@ al \ al Second step — Lja,| (5)-smooth
|
=
al -1
all al2 Y aiu
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
al /aé/ -\Fa,ll1 Initial reduction — Lj,| (1)-smooth
a? /ag/ -\\ai2 First step — L|a,| (2)-smooth
a? /ag/ -\\af’l?’ Second step — Lja,| (5)-smooth
at ! Last but one step — Norm: =~ L, (1)
\
0
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
ay a; \ coan Initial reduction — L, (1)-smooth
a? a? ... a2, First step — L|a,| (2)-smooth
3 .3 \ P _ 5)_
a al al Second step — Lz, (2)-smooth
|
o
al—!t Last but one step — ~ Lz (%)—smooth
all al2 Y aiu
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2. The g-descent

It=qa° Input ideal — Norm arbitrary large
a; // \\ a,. Initial reduction — L;a,| (1)-smooth
a? // -\\an2 First step — L|,| (%)-smooth
a? /a*;’/ \>a23 Second step — Ljay (%)—smooth
al ! Last but one step — &~ Lja, | (3)-smooth
al /ag/ \\ a,, Last step — Norm: Lja, (1)
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2. The g-descent

It =a° Input ideal — Norm arbitrary large
a; \ Coan Initial reduction — L;a,| (1)-smooth
a? \ caz, First step — L|,| (%)-smooth
3 /3/ \ 3 5
al ay o--oa, Second step — Ljay| (g)—smooth
|
o
al ! Last but one step — &~ Lja, | (3)-smooth
a, al \ o Last step — Ljay| (%)—smooth
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2.1. The g-descent — Initial round

Input: a of norm arbitrarily large
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2.1. The g-descent — Initial round

Input: a of norm arbitrarily large

Tool: DBKZ-reduction with block-size (log \AK])% <N

. . . N
on the lattice built from the canonical embedding Og+ — R
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2.1. The g-descent — Initial round

Input: a of norm arbitrarily large

Tool: DBKZ-reduction with block-size (log \AK])% <N
on the lattice built from the canonical embedding Ox+ — R

Output: small vector «+— algebraic integer v € a
— ideal b C O+ s.t. (v) =a-b and

N (b) < Liag| (%)
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2.1. The g-descent — Initial round

Input: a of norm arbitrarily large

Tool: DBKZ-reduction with block-size (log \AK])% <N

. . . N
on the lattice built from the canonical embedding Og+ — R

Output: small vector «+— algebraic integer v € a
— ideal b C O+ s.t. (v) =a-b and

N (b) < Liag| (%)

Cost: DBKZ-reduction = Poly (N,log NV(a)) - Liay (3)
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Smoothness tests & Randomization

Heuristic

We assume that the probability P that an ideal of norm bounded
by Lja,|(a) is a power-product of prime ideals of norm bounded by
B = Lja,(b) satisfies

P > L|AK| (a - b)_l .

Using ECM algorithm, each B-smoothness test costs L, (g)
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Smoothness tests & Randomization

Heuristic

We assume that the probability P that an ideal of norm bounded
by Lja,|(a) is a power-product of prime ideals of norm bounded by
B = L|a,|(b) satisfies

P > L|AK| (a - b)_l .
Using ECM algorithm, each B-smoothness test costs L, (%)

Conclusion: b is Lja,|(1)-smooth with probability Lja,| (%)_1
and one test costs L, (%)
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Smoothness tests & Randomization

Heuristic

We assume that the probability P that an ideal of norm bounded
by Lja,|(a) is a power-product of prime ideals of norm bounded by
B = L|a,|(b) satisfies

P > L|AK| (a - b)_l .
Using ECM algorithm, each B-smoothness test costs L, (g)

Conclusion: b is Lja,|(1)-smooth with probability Lja,| (%)_1
and one test costs L, (%)

= We use Lja, (%) ideals a = a ] p;" for small prime ideals p;
and integers e; to be sure to derive one b that is Liay| (1)-smooth.
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2.2. The g-descent — Subsequent steps

We cannot reduce the norm using the same lattice-reduction.
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2.2. The g-descent — Subsequent steps

We cannot reduce the norm using the same lattice-reduction.

Solution: Cheon'’s trick
o Use the coefficient embedding in the basis (¢* 4+ (™)
e Compute the HNF of the integral lattice

i

o Find a short vector in a sublattice of smaller dimension
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2.2. The g-descent — Subsequent steps

We cannot reduce the norm using the same lattice-reduction.

Solution: Cheon'’s trick
o Use the coefficient embedding in the basis (¢* 4+ (™)
e Compute the HNF of the integral lattice

i
o Find a short vector in a sublattice of smaller dimension

Input: a with V(a) < Lja,(a)
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2.2. The g-descent — Subsequent steps

We cannot reduce the norm using the same lattice-reduction.

Solution: Cheon's trick
@ Use the coefficient embedding in the basis (¢* + C_i)i
e Compute the HNF of the integral lattice

o Find a short vector in a sublattice of smaller dimension
Input: a with V(a) < Lja,(a)

Output: algebraic integer v € a and ideal b C Ok+ s.t.
(v)=a-band

N (6) < Lyagy (3547)
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2.2. The g-descent — Subsequent steps

We cannot reduce the norm using the same lattice-reduction.

Solution: Cheon's trick
@ Use the coefficient embedding in the basis (¢* + C_i)i
e Compute the HNF of the integral lattice

o Find a short vector in a sublattice of smaller dimension
Input: a with V(a) < Lja,(a)

Output: algebraic integer v € a and ideal b C Ok+ s.t.
(v)=a-band

N (0) < Liag (3%2)  ~ Liay (2%4H) -smooth
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2.2. The g-descent — Subsequent steps

We cannot reduce the norm using the same lattice-reduction.

Solution: Cheon's trick
@ Use the coefficient embedding in the basis (¢* + C_i)i
e Compute the HNF of the integral lattice

o Find a short vector in a sublattice of smaller dimension
Input: a with V(a) < Lja,(a)

Output: algebraic integer v € a and ideal b C Ok+ s.t.
(v)=a-band

N (0) < Liag (3%2)  ~ Liay (2%4H) -smooth

Cost:  Ljay| (3) for lattice reduction & smoothness tests
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2.3. The g-descent — The final step

After | — 1 steps, ideals have norm below Lja,| (5 + 37)-
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2.3. The g-descent — The final step

After | — 1 steps, ideals have norm below Lja,| (5 + 37)-

For I = [logy(log N)], we have

11 11 1
L|AK|< Ql) L|AK|( —ng):me (5)
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2.3. The g-descent — The final step

After | — 1 steps, ideals have norm below Lja,| (5 + 37)-

For I = [logy(log N)], we have

11 11 1
L|AK|< Ql) L|AK|( —ng):me (5)

Conclusion:

o All ideals have norm below Liay| (%)
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2.3. The g-descent — The final step

After | — 1 steps, ideals have norm below Lja,| (5 + 37)-

For I = [logy(log N)], we have

11 11 1
L|AK|< Ql) L|AK|( —ng):me (5)

Conclusion:
o All ideals have norm below Lja, (%)

o They are at most N' < Lja, (%) ideals
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2.3. The g-descent — The final step

After [ — 1 steps, ideals have norm below Lja, (% + %)

For I = [logy(log N)], we have

11 11 1
L|AK|< Ql) L|AK|( —logN>=L|AK (5)

Conclusion:
o All ideals have norm below Lja, (%)
o They are at most N' < Lja, (%) ideals

© The total runtime of the g-descent is L (%)
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B

@ Relation collection: construction of a full-rank matrix M
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B

@ Relation collection: construction of a full-rank matrix M

Relation: principal ideal that splits on the factor base. Test
ideals generated by v = >~ v; (¢ + (%) for |v;| < log|Ak].
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B

@ Relation collection: construction of a full-rank matrix M

Relation: principal ideal that splits on the factor base. Test
ideals generated by v = >~ v; (¢ + (%) for |v;| < log|Ak].

Norm below Lja,((1) = Ljay| (%)-smooth ideals in Ljay| (%)
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B

@ Relation collection: construction of a full-rank matrix M

vy — Myy -+ My -
V2 — My - My
’ = Vi, ( Hp b
. 7
v ) — \ Mg - Mqs|,s
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B
o Relation collection: construction of a full-rank matrix M

@ A N-dimensional vector Y including all the valuations of the
smooth ideals in the p;
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = Lja (%)

Index Calculus Method:

@ Factor base: set of all prime ideals with norm below B
o Relation collection: construction of a full-rank matrix M

@ A N-dimensional vector Y including all the valuations of the
smooth ideals in the p;

@ A solution X of M X =Y provides a generator of the product
of the Lja, (3)-smooth ideals
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Implementation results

PARI-GP and fpll1l for BKZ-reductions — Intel(R) Xeon(R) CPU
E3-1275 v3 © 3.50GHz with 32GB of memory

Dimension of the field: N = 2% = 256.
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Implementation results

PARI-GP and fpll1l for BKZ-reductions — Intel(R) Xeon(R) CPU
E3-1275 v3 © 3.50GHz with 32GB of memory

Dimension of the field: N = 2% = 256.

o Gentry-Szydlo: 20h and 24GB memory
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Implementation results

PARI-GP and fpll1l for BKZ-reductions — Intel(R) Xeon(R) CPU
E3-1275 v3 © 3.50GHz with 32GB of memory

Dimension of the field: N = 2% = 256.

o Gentry-Szydlo: 20h and 24GB memory

o BKZ-reduction: between 10 min and 4h
(Descent reduced to only one step)
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Implementation results

PARI-GP and fpll1l for BKZ-reductions — Intel(R) Xeon(R) CPU
E3-1275 v3 © 3.50GHz with 32GB of memory

Dimension of the field: N = 2% = 256.

o Gentry-Szydlo: 20h and 24GB memory

o BKZ-reduction: between 10 min and 4h
(Descent reduced to only one step)

We recover g - (* — and so the secret key g — in less than a day.
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Thanks

Thank you
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