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The Principal Ideal Problem

Definition
The Principal Ideal Problem (PIP) consists in finding a
generator of an ideal, assuming it is principal.

Base of several cryptographical schemes ([SV10],[GGH13])

Two distinct phases:
1 Given the Z-basis of the ideal a = 〈g〉, find a — not

necessarily short — generator g′ = g · u for a unit u.
2 From g′, find a short generator of the ideal.

Campbell, Groves, and Sheperd (2014) found a solution in polynomial
time for the second point for power-of-two cyclotomic fields.
Cramer, Ducas, Peikert, and Regev (2016) provided a proof and an
extension to prime-power cyclotomic fields.
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FHE scheme – Smart and Vercauteren PKC 2010

Key Generation:
1 Fix the security parameter N = 2n.

2 Let F (X) = XN + 1 be the polynomial defining the
cyclotomic field K = Q(ζ2N ).

3 Set G(X) = 1 + 2 · S(X),
for S(X) of degree N − 1 with coefficients in

[
−2
√
N , 2

√
N
]
,

such that the norm N (〈G(ζ2N )〉) is prime.

4 Set g = G(ζ2N ) ∈ OK.

5 Return the secret key sk = g and the public key
pk = HNF(〈g〉).

Our goal: Recover the secret key from the public key.
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Outline of the algorithm

1 Perform a reduction from the cyclotomic field to its totally real
subfield, allowing to work in smaller dimension.

2 Then a q-descent makes the size of involved ideals decrease.

3 Collect relations and run linear algebra to construct small
ideals and a generator.

4 Eventually run the derivation of the short generator from a
bigger one.

All the complexities are expressed as a function of the field
discriminant ∆Q(ζ2N ) = NN , for N = 2n. For instance,

L|∆K|(α) = 2N
α+o(1)

.
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1. Reduction to the totally real subfield

Goal: Halving the dimension of the ambient field

Gentry-Szydlo algorithm: Polynomial complexity
Input: a Z-basis of I = 〈u〉 and u · ū
Output: the generator u

Z-basis of 〈g〉 =⇒ Z-basis of 〈u〉 and u · ū = N (g)2

In the end, we get g · ḡ−1 and a Z-basis of
I+ = 〈g + ḡ〉 ⊂ Q(ζ + ζ−1)

Once we have a generator for I+, we get one for I by multiplying
by

1

1 + ḡ · g−1
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Z-basis of 〈g〉 =⇒ Z-basis of 〈u〉 and u · ū = N (g)2
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2. The q-descent

Input ideal – Norm arbitrary largeI+ = a0

a1
1 a1

2

a2
1 a2

2

a3
1 a3

2

. . .

al− 1

al1 al2 . . . alnl

1
1

. . . a3
n3

. . . a2
n2

. . . a1
n1
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2.1. The q-descent – Initial round

Input: a of norm arbitrarily large

Tool: DBKZ-reduction with block-size (log |∆K|)
1
2 ≤ N

on the lattice built from the canonical embedding OK+ → R
N
2

Output: small vector ←→ algebraic integer v ∈ a

=⇒ ideal b ⊂ OK+ s.t. 〈v〉 = a · b and

N (b) ≤ L|∆K|
(

3
2

)
Cost: DBKZ-reduction ⇒ Poly (N, logN (a)) · L|∆K|

(
1
2

)
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Smoothness tests & Randomization

Heuristic
We assume that the probability P that an ideal of norm bounded
by L|∆K|(a) is a power-product of prime ideals of norm bounded by
B = L|∆K|(b) satisfies

P ≥ L|∆K| (a− b)
−1 .

Using ECM algorithm, each B-smoothness test costs L|∆K|
(
b
2

)
.

Conclusion: b is L|∆K|(1)-smooth with probability L|∆K|
(

1
2

)−1

and one test costs L|∆K|
(

1
2

)
.

=⇒ We use L|∆K|
(

1
2

)
ideals ã = a

∏
peii for small prime ideals pi

and integers ei to be sure to derive one b̃ that is L|∆K| (1)-smooth.
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2.2. The q-descent – Subsequent steps

We cannot reduce the norm using the same lattice-reduction.

Solution: Cheon’s trick
Use the coefficient embedding in the basis

(
ζi + ζ−i

)
i

Compute the HNF of the integral lattice
Find a short vector in a sublattice of smaller dimension

Input: a with N (a) ≤ L|∆K|(α)

Output: algebraic integer v ∈ a and ideal b ⊂ OK+ s.t.
〈v〉 = a · b and

Cost: L|∆K|
(

1
2

)
for lattice reduction & smoothness tests
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2.3. The q-descent – The final step

After l − 1 steps, ideals have norm below L|∆K|
(

1
2 + 1

2l

)
.

For l = dlog2(logN)e, we have

L|∆K|

(
1

2
+

1

2l

)
≤ L|∆K|

(
1

2
+

1

logN

)
= L|∆K|

(
1

2

)
.

Conclusion:

All ideals have norm below L|∆K|
(

1
2

)
They are at most N l � L|∆K|

(
1
2

)
ideals

The total runtime of the q-descent is L|∆K|
(

1
2

)
.
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = L|∆K|
(

1
2

)

Index Calculus Method:

Factor base: set of all prime ideals with norm below B

Relation collection: construction of a full-rank matrix M
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = L|∆K|
(

1
2

)
Index Calculus Method:

Factor base: set of all prime ideals with norm below B

Relation collection: construction of a full-rank matrix M

Relation: principal ideal that splits on the factor base. Test
ideals generated by v =

∑
vi(ζ

i + ζ−i) for |vi| ≤ log |∆K|.
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2
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Index Calculus Method:

Factor base: set of all prime ideals with norm below B

Relation collection: construction of a full-rank matrix M

Relation: principal ideal that splits on the factor base. Test
ideals generated by v =

∑
vi(ζ

i + ζ−i) for |vi| ≤ log |∆K|.

Norm below L|∆K|(1) =⇒ L|∆K|
(

1
2

)
-smooth ideals in L|∆K|

(
1
2

)
.
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = L|∆K|
(

1
2

)
Index Calculus Method:

Factor base: set of all prime ideals with norm below B

Relation collection: construction of a full-rank matrix M


v1

v2
...

vQ|B|


→
→
...
→


M1,1 · · · M1,|B|
M2,1 · · · M2,|B|
...

...
MQ|B|,1 · · · MQ|B|,|B|

 =⇒ ∀i, 〈vi〉 =

|B|∏
j=1

p
Mi,j

j
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = L|∆K|
(

1
2

)
Index Calculus Method:

Factor base: set of all prime ideals with norm below B

Relation collection: construction of a full-rank matrix M

A N -dimensional vector Y including all the valuations of the
smooth ideals in the pi
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3. Solution for smooth ideals

Input: Bunch of prime ideals of norm below B = L|∆K|
(

1
2

)
Index Calculus Method:

Factor base: set of all prime ideals with norm below B

Relation collection: construction of a full-rank matrix M

A N -dimensional vector Y including all the valuations of the
smooth ideals in the pi

A solution X of MX = Y provides a generator of the product
of the L|∆K|

(
1
2

)
-smooth ideals
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Implementation results

PARI-GP and fplll for BKZ-reductions — Intel(R) Xeon(R) CPU
E3-1275 v3 @ 3.50GHz with 32GB of memory
Dimension of the field: N = 28 = 256.

Gentry-Szydlo: 20h and 24GB memory

BKZ-reduction: between 10 min and 4h
(Descent reduced to only one step)

We recover g · ζi — and so the secret key g — in less than a day.
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Thanks

Thank you
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