Principally polarized squares of elliptic curves with field of moduli equal to \mathbb{Q}

Alexandre Gélin Everett W. Howe Christophe Ritzenthaler

Laboratoire de Mathématiques de Versailles, France
CCR San Diego, USA Université de Rennes 1, France

ANTS XIII - Madison 2018/07/16

Principally polarized squares of elliptic curves with field of moduli equal to \mathbb{Q}

Alexandre Gélin Everett W. Howe Christophe Ritzenthaler

Laboratoire de Mathématiques de Versailles, France CCR San Diego, USA Université de Rennes 1, France

Our result

Proposition

- There exist exactly 46 genus- 2 curves over $\overline{\mathbb{Q}}$ with field of moduli \mathbb{Q} whose Jacobians are isomorphic to the square of an elliptic curve with complex multiplication by a maximal order.
- Among these 46 curves exactly 13 can be defined over \mathbb{Q}.

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli: the field fixed by $\left\{\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \mid A \simeq A^{\sigma}\right\}$

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^{2} \Longleftrightarrow A \simeq E_{1} \times E_{2}$

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^{2} \Longleftrightarrow A \simeq E_{1} \times E_{2}$
- Additional constraint: we focus on $A \simeq E^{2}$

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^{2} \Longleftrightarrow A \simeq E_{1} \times E_{2}$
- Additional constraint: we focus on $A \simeq E^{2}$
- E must be a CM elliptic curve

Problem statement

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^{2} \Longleftrightarrow A \simeq E_{1} \times E_{2}$
- Additional constraint: we focus on $A \simeq E^{2}$
- E must be a CM elliptic curve
- For simplicity, we only consider E with CM by a maximal order

Conditions on E^{2}

\mathbb{Q} is field of moduli $\Longrightarrow\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma} \quad$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

Conditions on E^{2}

\mathbb{Q} is field of moduli $\Longrightarrow\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma} \quad$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\Longrightarrow \quad E^{2} \simeq\left(E^{\sigma}\right)^{2} \quad \begin{aligned}
& \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}) \\
& \text { (with } \mathbb{K} \text { the } \mathrm{CM} \text {-field for } E \text {) }
\end{aligned}
$$

Conditions on E^{2}

\mathbb{Q} is field of moduli $\Longrightarrow\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma} \quad$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\Longrightarrow \quad E^{2} \simeq\left(E^{\sigma}\right)^{2} \quad \begin{aligned}
& \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}) \\
& \text { (with } \mathbb{K} \text { the } \mathrm{CM} \text {-field for } E \text {) }
\end{aligned}
$$

CM-theory $\quad \Rightarrow \quad E^{\sigma} \simeq E / I_{\sigma} \quad$ for $I_{\sigma} \in \mathrm{Cl}(\mathscr{O})$

Conditions on E^{2}

\mathbb{Q} is field of moduli $\Longrightarrow\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma} \quad$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\Longrightarrow \quad E^{2} \simeq\left(E^{\sigma}\right)^{2} \quad \begin{aligned}
& \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}) \\
& \text { (with } \mathbb{K} \text { the CM-field for } E \text {) }
\end{aligned}
$$

CM-theory $\quad \Longrightarrow \quad E^{\sigma} \simeq E / I_{\sigma} \quad$ for $I_{\sigma} \in \mathrm{Cl}(\mathscr{O})$
$\operatorname{Kani}(2011) \quad \Longrightarrow \quad E^{2} \simeq\left(E / I_{\sigma}\right)^{2} \quad \Longleftrightarrow \quad I_{\sigma}^{2}=[\mathscr{O}]$

Conditions on E^{2}

\mathbb{Q} is field of moduli $\Longrightarrow\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma} \quad$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\Longrightarrow \quad E^{2} \simeq\left(E^{\sigma}\right)^{2} \quad \begin{aligned}
& \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}) \\
& \\
& \text { (with } \mathbb{K} \text { the } \mathrm{CM} \text {-field for } E)
\end{aligned}
$$

$\begin{array}{lll}\text { CM-theory } & \Longrightarrow & E^{\sigma} \simeq E / I_{\sigma}\end{array} \quad$ for $I_{\sigma} \in \operatorname{Cl}(\mathscr{O}) ~ 子 ~(2011) \quad \Longrightarrow \quad E^{2} \simeq\left(E / I_{\sigma}\right)^{2} \quad \Longleftrightarrow \quad I_{\sigma}^{2}=[\mathscr{O}]$

Proposition

A necessary condition for the field of moduli \mathbf{M} to be contained in \mathbb{K} is that the class group of \mathscr{O} has exponent at most 2 .

Conditions on E^{2}

\mathbb{Q} is field of moduli $\Longrightarrow\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma} \quad$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\Longrightarrow \quad E^{2} \simeq\left(E^{\sigma}\right)^{2} \quad \begin{aligned}
& \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}) \\
& \text { (with } \mathbb{K} \text { the } \mathrm{CM} \text {-field for } E \text {) }
\end{aligned}
$$

CM-theory $\quad \Longrightarrow \quad E^{\sigma} \simeq E / I_{\sigma} \quad$ for $I_{\sigma} \in \operatorname{Cl}(\mathscr{O})$
Kani $(2011) \quad \Longrightarrow \quad E^{2} \simeq\left(E / I_{\sigma}\right)^{2} \quad \Longleftrightarrow \quad I_{\sigma}^{2}=[\mathscr{O}]$

Proposition

A necessary condition for the field of moduli \mathbf{M} to be contained in \mathbb{K} is that the class group of \mathscr{O} has exponent at most 2 .

Fact

Assuming the Generalized Riemann Hypothesis, there exist 65 fundamental discriminants whose class group is of exponent at most 2.

Conditions on E^{2}

$\# \mathrm{Cl}(\mathscr{O})$	Discriminants Δ
2^{0}	$-3,-4,-7,-8,-11,-19,-43,-67,-163$
2^{1}	$-15,-20,-24,-35,-40,-51,-52,-88,-91,-115$,
2^{2}	$-123,-148,-187,-232,-235,-267,-403,-427$
	$-84,-120,-132,-168,-195,-228,-280,-312$,
	$-340,-372,-408,-435,-483,-520,-532,-555$,
2^{3}	$-595,-627,-708,-715,-760,-795,-1012,-1435$
	$-1420,-660,-840,-1092,-1155,-1320,-1380$,
2^{4}	-5460

Polarizations over E^{2}

- Principal polarization \longrightarrow isogeny of degree 1 from E^{2} to $\widehat{E^{2}}$

Polarizations over E^{2}

- Principal polarization \longrightarrow isogeny of degree 1 from E^{2} to $\widehat{E^{2}}$
- One particular example: the product polarization $\varphi_{0}=\varphi_{E} \times \varphi_{E}$

Polarizations over E^{2}

- Principal polarization \longrightarrow isogeny of degree 1 from E^{2} to $\widehat{E^{2}}$
- One particular example: the product polarization $\varphi_{0}=\varphi_{E} \times \varphi_{E}$
- Characterization: $\quad \varphi=\varphi_{0} \cdot M$ for M positive definite unimodular Hermitian matrices with coefficients in \mathscr{O}

Polarizations over E^{2}

- Principal polarization \longrightarrow isogeny of degree 1 from E^{2} to $\widehat{E^{2}}$
- One particular example: the product polarization $\varphi_{0}=\varphi_{E} \times \varphi_{E}$
- Characterization: $\quad \varphi=\varphi_{0} \cdot M$ for M positive definite unimodular Hermitian matrices with coefficients in \mathscr{O}
- Isomorphic polarizations \longleftrightarrow Congruent matrices

Polarizations over E^{2}

- Principal polarization \longrightarrow isogeny of degree 1 from E^{2} to $\widehat{E^{2}}$
- One particular example: the product polarization $\varphi_{0}=\varphi_{E} \times \varphi_{E}$
- Characterization: $\quad \varphi=\varphi_{0} \cdot M$ for M positive definite unimodular Hermitian matrices with coefficients in \mathscr{O}
- Isomorphic polarizations \longleftrightarrow Congruent matrices

Proposition

In genus $2,\left(E^{2}, \varphi\right)$ is a Jacobian $\Longleftrightarrow \varphi$ is not decomposable $\Longleftrightarrow M$ is not congruent to a diagonal matrix.

Find the polarizations

- One representative per isomorphism class
\longrightarrow a matrix M with small coefficients

Find the polarizations

- One representative per isomorphism class
\longrightarrow a matrix M with small coefficients
- We know the number of polarizations for each order

Hayashida (1968)

Find the polarizations

- One representative per isomorphism class
\longrightarrow a matrix M with small coefficients
- We know the number of polarizations for each order Hayashida (1968)
- Enumerate all matrices $\left(\begin{array}{cc}a & b \\ \bar{b} & P / a\end{array}\right)$ for P increasing in \mathbb{N}, a dividing P and $\operatorname{Norm}(b)=P-1$

Find the polarizations

- One representative per isomorphism class
\longrightarrow a matrix M with small coefficients
- We know the number of polarizations for each order Hayashida (1968)
- Enumerate all matrices $\left(\begin{array}{cc}a & b \\ \bar{b} & P / a\end{array}\right)$ for P increasing in \mathbb{N}, a dividing P and $\operatorname{Norm}(b)=P-1$

Fact

For the 65 possible orders, there exist 1226 indecomposable principal polarizations.

Conditions on $\left(E^{2}, \varphi\right)$

- $\mathbf{M} \subseteq \mathbb{K}$ is field of moduli $\Longleftrightarrow \forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}),\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma}$, i.e., the following diagram commutes

Conditions on $\left(E^{2}, \varphi\right)$

- $\mathbf{M} \subseteq \mathbb{K}$ is field of moduli $\Longleftrightarrow \forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}),\left(E^{2}, \varphi\right) \simeq\left(E^{2}, \varphi\right)^{\sigma}$, i.e., the following diagram commutes

- In terms of ideals, if $E^{\sigma} \simeq E / I_{\sigma}$ with $I_{\sigma} \in \mathrm{Cl}(\mathscr{O})$ and $\mathfrak{a}_{\sigma} \in I_{\sigma}$, then $\forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{K}), \exists P \in \mathrm{GL}_{2}\left(\mathfrak{a}_{\sigma}\right)$ such that $\left(n=\operatorname{Norm}\left(\mathfrak{a}_{\sigma}\right)\right)$

$$
n M=P^{*} M P
$$

Enumeration process

- Suppose there exists a matrix P such that $n M=P^{*} M P$.

Enumeration process

- Suppose there exists a matrix P such that $n M=P^{*} M P$.
- If $M=\left(\begin{array}{ll}a & b \\ \bar{b} & d\end{array}\right)$, let us take $L=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$, so that $L^{*} L=a M$.

Enumeration process

- Suppose there exists a matrix P such that $n M=P^{*} M P$.
- If $M=\left(\begin{array}{ll}a & b \\ \bar{b} & d\end{array}\right)$, let us take $L=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$, so that $L^{*} L=a M$.
- Let $Q=L P L^{-1}$. Then $n M=P^{*} M P$ becomes $n \mathrm{Id}=Q^{*} Q$.

Enumeration process

- Suppose there exists a matrix P such that $n M=P^{*} M P$.
- If $M=\left(\begin{array}{ll}a & b \\ \bar{b} & d\end{array}\right)$, let us take $L=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$, so that $L^{*} L=a M$.
- Let $Q=L P L^{-1}$. Then $n M=P^{*} M P$ becomes $n \mathrm{Id}=Q^{*} Q$.
- Hence Q must be of the form $\left(\begin{array}{cc}x & y \\ z & t\end{array}\right)$ with $x, y, z, t \in \mathbb{K}$ satisfying
$\operatorname{Norm}(x)+\operatorname{Norm}(z)=\operatorname{Norm}(y)+\operatorname{Norm}(t)=n \quad$ and $\quad \bar{x} y+\bar{z} t=0$.

Enumeration process

- Suppose there exists a matrix P such that $n M=P^{*} M P$.
- If $M=\left(\begin{array}{ll}a & b \\ \bar{b} & d\end{array}\right)$, let us take $L=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$, so that $L^{*} L=a M$.
- Let $Q=L P L^{-1}$. Then $n M=P^{*} M P$ becomes $n \mathrm{Id}=Q^{*} Q$.
- Hence Q must be of the form $\left(\begin{array}{cc}x & y \\ z & t\end{array}\right)$ with $x, y, z, t \in \mathbb{K}$ satisfying
$\operatorname{Norm}(x)+\operatorname{Norm}(z)=\operatorname{Norm}(y)+\operatorname{Norm}(t)=n \quad$ and $\quad \bar{x} y+\bar{z} t=0$.
- And

$$
P=L^{-1} Q L=\left(\begin{array}{cc}
x-b z & \frac{b x+y-b^{2} z-b t}{a} \\
a z & b z+t
\end{array}\right) \in M_{2}\left(\mathfrak{a}_{\sigma}\right) .
$$

Enumeration process

- For every polarization

For every ideal class $I_{\sigma} \in \operatorname{Cl}(\mathscr{O})$
Compute the solutions of the norm equation
Check whether the matrix P lies in $M_{2}\left(\mathfrak{a}_{\sigma}\right)$

Enumeration process

- For every polarization

For every ideal class $I_{\sigma} \in \operatorname{Cl}(\mathscr{O})$
Compute the solutions of the norm equation
Check whether the matrix P lies in $M_{2}\left(\mathfrak{a}_{\sigma}\right)$

- If we have a matrix P for each class, then $\mathbf{M} \subseteq \mathbb{K}$

Enumeration process

- For every polarization

For every ideal class $I_{\sigma} \in \operatorname{Cl}(\mathscr{O})$
Compute the solutions of the norm equation
Check whether the matrix P lies in $M_{2}\left(\mathfrak{a}_{\sigma}\right)$

- If we have a matrix P for each class, then $\mathbf{M} \subseteq \mathbb{K}$
- Eventually, we get $\mathbf{M}=\mathbb{Q}$ as $\mathbb{Q}(j(E))$ is totally real

Enumeration process

- For every polarization

For every ideal class $I_{\sigma} \in \operatorname{Cl}(\mathscr{O})$
Compute the solutions of the norm equation
Check whether the matrix P lies in $M_{2}\left(\mathfrak{a}_{\sigma}\right)$

- If we have a matrix P for each class, then $\mathbf{M} \subseteq \mathbb{K}$
- Eventually, we get $\mathbf{M}=\mathbb{Q}$ as $\mathbb{Q}(j(E))$ is totally real

Fact

Among the 1226 Jacobians of genus-2 curves identified earlier, 46 have their field of moduli equal to \mathbb{Q}.

Construction of the invariants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix

Construction of the invariants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the theta constants

Construction of the invariants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the theta constants
- With $\lambda_{1}=\frac{\theta_{0}^{2} \theta_{2}^{2}}{\theta_{1}^{2} \theta_{3}^{2}}, \lambda_{2}=\frac{\theta_{2}^{2} \theta_{7}^{2}}{\theta_{3}^{2} \theta_{9}^{2}}$, and $\lambda_{3}=\frac{\theta_{0}^{2} \theta_{7}^{2}}{\theta_{1}^{2} \theta_{9}^{2}}$, we get the model

$$
C: y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)
$$

Construction of the invariants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the theta constants
- With $\lambda_{1}=\frac{\theta_{0}^{2} \theta_{2}^{2}}{\theta_{1}^{2} \theta_{3}^{2}}, \lambda_{2}=\frac{\theta_{2}^{2} \theta_{7}^{2}}{\theta_{3}^{2} \theta_{9}^{2}}$, and $\lambda_{3}=\frac{\theta_{0}^{2} \theta_{7}^{2}}{\theta_{1}^{2} \theta_{9}^{2}}$, we get the model

$$
C: y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)
$$

- Compute an approximation of the Cardona-Quer invariants

Construction of the invariants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the theta constants
- With $\lambda_{1}=\frac{\theta_{0}^{2} \theta_{2}^{2}}{\theta_{1}^{2} \theta_{3}^{2}}, \lambda_{2}=\frac{\theta_{2}^{2} \theta_{7}^{2}}{\theta_{3}^{2} \theta_{9}^{2}}$, and $\lambda_{3}=\frac{\theta_{\theta}^{2} \theta_{7}^{2}}{\theta_{1}^{2} \theta_{9}^{2}}$, we get the model

$$
C: y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)
$$

- Compute an approximation of the Cardona-Quer invariants
- Recognize them as rationals (special form for denominators)

Models over \mathbb{Q}

- If $|\operatorname{Aut}(C)|>2$, the field of moduli is a field of definition [CQ05]

Models over \mathbb{Q}

- If $|\operatorname{Aut}(C)|>2$, the field of moduli is a field of definition [CQ05]
- If $|\operatorname{Aut}(C)|=2$, not even a model over \mathbb{R}

Models over \mathbb{Q}

- If $|\operatorname{Aut}(C)|>2$, the field of moduli is a field of definition [CQ05]
- If $|\operatorname{Aut}(C)|=2$, not even a model over \mathbb{R}
- Easy to compute the group of automorphisms of $\left(E^{2}, \varphi\right)$
(matrices P such that $P^{*} M P=M$)

Models over \mathbb{Q}

- If $|\operatorname{Aut}(C)|>2$, the field of moduli is a field of definition [CQ05]
- If $|\operatorname{Aut}(C)|=2$, not even a model over \mathbb{R}
- Easy to compute the group of automorphisms of $\left(E^{2}, \varphi\right)$
(matrices P such that $P^{*} M P=M$)

Fact

Among the 46 genus- 2 curves with field of moduli $\mathbb{Q}, 13$ have a model over \mathbb{Q}.

Models over \mathbb{Q}

- If $|\operatorname{Aut}(C)|>2$, the field of moduli is a field of definition [CQ05]
- If $|\operatorname{Aut}(C)|=2$, not even a model over \mathbb{R}
- Easy to compute the group of automorphisms of $\left(E^{2}, \varphi\right)$
(matrices P such that $P^{*} M P=M$)

Fact

Among the 46 genus- 2 curves with field of moduli $\mathbb{Q}, 13$ have a model over \mathbb{Q}.

Proof

For these 13 curves, we have proven that the invariants are correct by having computed the endomorphism ring.

Thank youl

Alexandre Gélin Principally polarized squares of elliptic curves
Alexandre Gélin Principally polarized squares of elliptic curves
Alexandre Gélin Principally polarized squares of elliptic curves
都

