Principally polarized squares of elliptic curves with field of moduli equal to \mathbb{Q}

Alexandre Gélin Everett W. Howe Christophe Ritzenthaler

Laboratoire de Mathématiques de Versailles, France CCR San Diego, USA Université de Rennes 1, France

ANTS XIII - Madison

2018/07/16

Principally polarized squares of elliptic curves with field of moduli equal to \mathbb{Q}

Alexandre Gélin Everett W. Howe Christophe Ritzenthaler

Laboratoire de Mathématiques de Versailles, France CCR San Diego, USA Université de Rennes 1, France

ANTS XIII - Madison

2018/07/16

Proposition

- There exist exactly 46 genus-2 curves over Q
 with field of moduli Q whose Jacobians are isomorphic to the square of an elliptic curve with complex multiplication by a maximal order.
- Among these 46 curves exactly 13 can be defined over \mathbb{Q} .

• Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2

- \bullet Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli: the field fixed by $\{\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \mid A \simeq A^{\sigma}\}$

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- $\bullet\,$ Field of moduli $\mathbb{Q}\,\longleftrightarrow\,$ Rational points in the moduli space

- Genus-2 curves \rightarrow Princ. polarized abelian varieties of dim. 2
- $\bullet\,$ Field of moduli $\mathbb{Q}\,\longleftrightarrow\,$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field

- Genus-2 curves \rightarrow Princ. polarized abelian varieties of dim. 2
- $\bullet\,$ Field of moduli $\mathbb{Q}\,\longleftrightarrow\,$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3

- Genus-2 curves \rightarrow Princ. polarized abelian varieties of dim. 2
- $\bullet\,$ Field of moduli $\mathbb{Q}\,\longleftrightarrow\,$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^2 \iff A \simeq E_1 \times E_2$

- Genus-2 curves \rightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^2 \iff A \simeq E_1 \times E_2$
- Additional constraint: we focus on $A \simeq E^2$

- Genus-2 curves \rightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^2 \iff A \simeq E_1 \times E_2$
- Additional constraint: we focus on $A \simeq E^2$
- E must be a CM elliptic curve

- Genus-2 curves \longrightarrow Princ. polarized abelian varieties of dim. 2
- Field of moduli $\mathbb{Q} \longleftrightarrow$ Rational points in the moduli space
- CM: endomorphism ring contains an order in a number field
- Simple case: well-known in genus 1, 2 and 3
- Non-simple case: $A \sim E^2 \iff A \simeq E_1 \times E_2$
- Additional constraint: we focus on $A \simeq E^2$
- E must be a CM elliptic curve
- For simplicity, we only consider E with CM by a maximal order

\mathbb{Q} is field of moduli $\implies (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma}$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

$$\mathbb{Q} \text{ is field of moduli} \implies (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma} \quad \text{for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$$

$$\implies E^2 \simeq (E^{\sigma})^2 \qquad \text{for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{K})$$
(with K the CM-field for E)

$$\mathbb{Q} \text{ is field of moduli} \implies (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma} \quad \text{for all } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$$
$$\implies E^2 \simeq (E^{\sigma})^2 \qquad \text{for all } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{K})$$
(with K the CM-field for E)
CM-theory
$$\implies E^{\sigma} \simeq E/I_{\sigma} \qquad \text{for } I_{\sigma} \in \text{Cl}(\mathcal{O})$$

$$\begin{aligned} \mathbb{Q} \text{ is field of moduli} &\implies (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma} & \text{ for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \\ &\implies E^2 \simeq (E^{\sigma})^2 & \text{ for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{K}) \\ & \text{ (with } \mathbb{K} \text{ the CM-field for } E) \end{aligned}$$

$$\begin{aligned} \mathsf{CM-theory} &\implies E^{\sigma} \simeq E/I_{\sigma} & \text{ for } I_{\sigma} \in \operatorname{Cl}(\mathscr{O}) \\ & \mathsf{Kani} \ (2011) &\implies E^2 \simeq (E/I_{\sigma})^2 &\iff I_{\sigma}^2 = [\mathscr{O}] \end{aligned}$$

$$\mathbb{Q} \text{ is field of moduli} \implies (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma} \quad \text{for all } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$$

$$\implies E^2 \simeq (E^{\sigma})^2 \quad \text{for all } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{K})$$
(with K the CM-field for E)
$$\text{CM-theory} \implies E^{\sigma} \simeq E/I_{\sigma} \quad \text{for } I_{\sigma} \in \text{Cl}(\mathcal{O})$$

$$\text{Kani (2011)} \implies E^2 \simeq (E/I_{\sigma})^2 \quad \Longleftrightarrow \quad I_{\sigma}^2 = [\mathcal{O}]$$

Proposition

A necessary condition for the field of moduli **M** to be contained in \mathbb{K} is that the class group of \mathcal{O} has exponent at most 2.

$$\mathbb{Q} \text{ is field of moduli} \implies (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma} \quad \text{for all } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$$

$$\implies E^2 \simeq (E^{\sigma})^2 \quad \text{for all } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{K})$$
(with K the CM-field for E)
$$\text{CM-theory} \implies E^{\sigma} \simeq E/I_{\sigma} \quad \text{for } I_{\sigma} \in \text{Cl}(\mathcal{O})$$

$$\text{Kani (2011)} \implies E^2 \simeq (E/I_{\sigma})^2 \quad \Longleftrightarrow \quad I_{\sigma}^2 = [\mathcal{O}]$$

Proposition

A necessary condition for the field of moduli **M** to be contained in \mathbb{K} is that the class group of \mathcal{O} has exponent at most 2.

Fact

Assuming the Generalized Riemann Hypothesis, there exist 65 fundamental discriminants whose class group is of exponent at most 2.

$\#\operatorname{Cl}(\mathcal{O})$	Discriminants Δ
20	-3, -4, -7, -8, -11, -19, -43, -67, -163
2^1	-15, -20, -24, -35, -40, -51, -52, -88, -91, -115, -123, -148, -187, -232, -235, -267, -403, -427
2 ²	-84, -120, -132, -168, -195, -228, -280, -312, -340, -372, -408, -435, -483, -520, -532, -555, -595, -627, -708, -715, -760, -795, -1012, -1435
2 ³	-420, -660, -840, -1092, -1155, -1320, -1380, -1428, -1540, -1848, -1995, -3003, -3315
2^4	-5460

• Principal polarization \longrightarrow isogeny of degree 1 from E^2 to $\widehat{E^2}$

- Principal polarization \longrightarrow isogeny of degree 1 from E^2 to \widehat{E}^2
- One particular example: the product polarization $\varphi_0 = \varphi_E \times \varphi_E$

- Principal polarization \longrightarrow isogeny of degree 1 from E^2 to $\widehat{E^2}$
- One particular example: the product polarization $\varphi_0 = \varphi_E \times \varphi_E$
- Characterization: $\varphi = \varphi_0 \cdot M$ for M positive definite unimodular Hermitian matrices with coefficients in \mathcal{O}

- Principal polarization \longrightarrow isogeny of degree 1 from E^2 to \widehat{E}^2
- One particular example: the product polarization $\varphi_0 = \varphi_E \times \varphi_E$
- Characterization: $\varphi = \varphi_0 \cdot M$ for M positive definite unimodular Hermitian matrices with coefficients in \mathcal{O}
- Isomorphic polarizations ←→ Congruent matrices

- Principal polarization \longrightarrow isogeny of degree 1 from E^2 to \widehat{E}^2
- One particular example: the product polarization $\varphi_0 = \varphi_E \times \varphi_E$
- Characterization: $\varphi = \varphi_0 \cdot M$ for M positive definite unimodular Hermitian matrices with coefficients in \mathcal{O}
- Isomorphic polarizations ←→ Congruent matrices

Proposition

In genus 2, (E^2, φ) is a Jacobian $\iff \varphi$ is not decomposable $\iff M$ is not congruent to a diagonal matrix.

• One representative per isomorphism class

 \longrightarrow a matrix M with small coefficients

Find the polarizations

- One representative per isomorphism class \rightarrow a matrix M with small coefficients
- \bullet We know the number of polarizations for each order $${\rm Hayashida}$ (1968)$

Find the polarizations

- One representative per isomorphism class \rightarrow a matrix M with small coefficients
- We know the number of polarizations for each order Hayashida (1968)
- Enumerate all matrices $\begin{pmatrix} a & b \\ \bar{b} & P/a \end{pmatrix}$ for *P* increasing in \mathbb{N} , *a* dividing *P* and Norm(*b*) = *P*-1

Find the polarizations

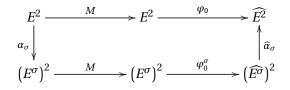
- One representative per isomorphism class \longrightarrow a matrix M with small coefficients
- We know the number of polarizations for each order Hayashida (1968)
- Enumerate all matrices $\begin{pmatrix} a & b \\ \bar{b} & P/a \end{pmatrix}$ for *P* increasing in \mathbb{N} , *a* dividing *P* and Norm(*b*) = *P* 1

Fact

For the 65 possible orders, there exist 1226 indecomposable principal polarizations.

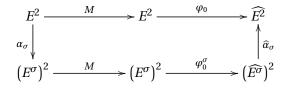
Conditions on (E^2, φ)

• $\mathbf{M} \subseteq \mathbb{K}$ is field of moduli $\iff \forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{K}), (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma},$ *i.e.*, the following diagram commutes



Conditions on (E^2, φ)

• $\mathbf{M} \subseteq \mathbb{K}$ is field of moduli $\iff \forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{K}), (E^2, \varphi) \simeq (E^2, \varphi)^{\sigma},$ *i.e.*, the following diagram commutes



• In terms of ideals, if $E^{\sigma} \simeq E/I_{\sigma}$ with $I_{\sigma} \in Cl(\mathcal{O})$ and $\mathfrak{a}_{\sigma} \in I_{\sigma}$, then $\forall \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{K}), \exists P \in GL_2(\mathfrak{a}_{\sigma})$ such that $(n = Norm(\mathfrak{a}_{\sigma}))$

 $nM = P^*MP$

• Suppose there exists a matrix P such that $nM = P^*MP$.

• Suppose there exists a matrix P such that $nM = P^*MP$.

• If
$$M = \begin{pmatrix} a & b \\ \bar{b} & d \end{pmatrix}$$
, let us take $L = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, so that $L^*L = aM$.

• Suppose there exists a matrix P such that $nM = P^*MP$.

• If
$$M = \begin{pmatrix} a & b \\ \bar{b} & d \end{pmatrix}$$
, let us take $L = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, so that $L^*L = aM$.

• Let $Q = LPL^{-1}$. Then $nM = P^*MP$ becomes $n \operatorname{Id} = Q^*Q$.

- Suppose there exists a matrix P such that $nM = P^*MP$.
- If $M = \begin{pmatrix} a & b \\ \bar{b} & d \end{pmatrix}$, let us take $L = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, so that $L^*L = aM$.
- Let $Q = LPL^{-1}$. Then $nM = P^*MP$ becomes $n \operatorname{Id} = Q^*Q$.
- Hence Q must be of the form $\begin{pmatrix} x & y \\ z & t \end{pmatrix}$ with x, y, z, $t \in \mathbb{K}$ satisfying

 $\operatorname{Norm}(x) + \operatorname{Norm}(z) = \operatorname{Norm}(y) + \operatorname{Norm}(t) = n \quad \text{and} \quad \overline{x}y + \overline{z}t = 0.$

• Suppose there exists a matrix P such that $nM = P^*MP$.

• If
$$M = \begin{pmatrix} a & b \\ \overline{b} & d \end{pmatrix}$$
, let us take $L = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, so that $L^*L = aM$.

- Let $Q = LPL^{-1}$. Then $nM = P^*MP$ becomes $n \operatorname{Id} = Q^*Q$.
- Hence Q must be of the form $\begin{pmatrix} x & y \\ z & t \end{pmatrix}$ with x, y, z, $t \in \mathbb{K}$ satisfying

 $\operatorname{Norm}(x) + \operatorname{Norm}(z) = \operatorname{Norm}(y) + \operatorname{Norm}(t) = n \quad \text{and} \quad \overline{x}y + \overline{z}t = 0.$

$$P = L^{-1}QL = \begin{pmatrix} x - bz & \frac{bx + y - b^2 z - bt}{a} \\ az & bz + t \end{pmatrix} \in M_2(\mathfrak{a}_{\sigma}).$$

• For every polarization

For every ideal class $I_{\sigma} \in Cl(\mathcal{O})$ Compute the solutions of the norm equation

Check whether the matrix P lies in $M_2(\mathfrak{a}_{\sigma})$

For every polarization

For every ideal class $I_{\sigma} \in Cl(\mathcal{O})$ Compute the solutions of the norm equation Check whether the matrix *P* lies in $M_2(\mathfrak{a}_{\sigma})$

• If we have a matrix P for each class, then $\mathbf{M} \subseteq \mathbb{K}$

For every polarization

For every ideal class $I_{\sigma} \in Cl(\mathcal{O})$ Compute the solutions of the norm equation Check whether the matrix P lies in $M_2(\mathfrak{a}_{\sigma})$

- If we have a matrix P for each class, then $\mathbf{M} \subseteq \mathbb{K}$
- Eventually, we get $\mathbf{M} = \mathbb{Q}$ as $\mathbb{Q}(j(E))$ is totally real

For every polarization

For every ideal class $I_{\sigma} \in Cl(\mathcal{O})$

Compute the solutions of the norm equation Check whether the matrix P lies in $M_2(\mathfrak{a}_{\sigma})$

- If we have a matrix P for each class, then $\mathbf{M} \subseteq \mathbb{K}$
- Eventually, we get $\mathbf{M} = \mathbb{Q}$ as $\mathbb{Q}(j(E))$ is totally real

Fact

Among the 1226 Jacobians of genus-2 curves identified earlier, 46 have their field of moduli equal to \mathbb{Q} .

• Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the *theta* constants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the *theta* constants

• With
$$\lambda_1 = \frac{\theta_0^2 \theta_2^2}{\theta_1^2 \theta_3^2}$$
, $\lambda_2 = \frac{\theta_2^2 \theta_7^2}{\theta_3^2 \theta_9^2}$, and $\lambda_3 = \frac{\theta_0^2 \theta_7^2}{\theta_1^2 \theta_9^2}$, we get the model
 $C: y^2 = x(x-1)(x-\lambda_1)(x-\lambda_2)(x-\lambda_3)$

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the *theta* constants

• With
$$\lambda_1 = \frac{\theta_0^2 \theta_2^2}{\theta_1^2 \theta_3^2}$$
, $\lambda_2 = \frac{\theta_2^2 \theta_7^2}{\theta_3^2 \theta_9^2}$, and $\lambda_3 = \frac{\theta_0^2 \theta_7^2}{\theta_1^2 \theta_9^2}$, we get the model
 $C: y^2 = x(x-1)(x-\lambda_1)(x-\lambda_2)(x-\lambda_3)$

• Compute an approximation of the Cardona-Quer invariants

- Polarization \longrightarrow Matrix $M \longrightarrow$ Riemann matrix
- Compute the *theta* constants

• With
$$\lambda_1 = \frac{\theta_0^2 \theta_2^2}{\theta_1^2 \theta_3^2}$$
, $\lambda_2 = \frac{\theta_2^2 \theta_7^2}{\theta_3^2 \theta_9^2}$, and $\lambda_3 = \frac{\theta_0^2 \theta_7^2}{\theta_1^2 \theta_9^2}$, we get the model
 $C: y^2 = x(x-1)(x-\lambda_1)(x-\lambda_2)(x-\lambda_3)$

- Compute an approximation of the Cardona-Quer invariants
- Recognize them as rationals (special form for denominators)

• If $|\operatorname{Aut}(C)| > 2$, the field of moduli is a field of definition [CQ05]

- If $|\operatorname{Aut}(C)| > 2$, the field of moduli is a field of definition [CQ05]
- If $|\operatorname{Aut}(C)| = 2$, not even a model over \mathbb{R}

- If |Aut(C)| > 2, the field of moduli is a field of definition [CQ05]
- If |Aut(C)| = 2, not even a model over \mathbb{R}
- Easy to compute the group of automorphisms of (E^2, φ) (matrices *P* such that $P^*MP = M$)

- If $|\operatorname{Aut}(C)| > 2$, the field of moduli is a field of definition [CQ05]
- If |Aut(C)| = 2, not even a model over \mathbb{R}
- Easy to compute the group of automorphisms of (E^2, φ) (matrices *P* such that $P^*MP = M$)

Fact

Among the 46 genus-2 curves with field of moduli $\mathbb{Q},\,13$ have a model over $\mathbb{Q}.$

- If $|\operatorname{Aut}(C)| > 2$, the field of moduli is a field of definition [CQ05]
- If |Aut(C)| = 2, not even a model over \mathbb{R}
- Easy to compute the group of automorphisms of (E^2, φ) (matrices *P* such that $P^*MP = M$)

Fact

Among the 46 genus-2 curves with field of moduli $\mathbb{Q},\,13$ have a model over $\mathbb{Q}.$

Proof

For these 13 curves, we have proven that the invariants are correct by having computed the endomorphism ring.

Costa-Mascot-Sijsling-Voight (2017)

Thank you