Reducing number field defining polynomials: An application to class group computations

Alexandre Gélin and Antoine Joux

Laboratoire d'Informatique de Paris 6 - Sorbonne Universités UPMC

Chaire de Cryptologie, Fondation UPMC

ANTS XII – Kaiserslautern

2016/09/02

K number field \Rightarrow finite extension of **Q** $\Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

 $\mathbf{K} = \mathbf{Q}[X]/(T).$

T is a defining polynomial of **K**.

K number field \Rightarrow finite extension of $\mathbf{Q} \Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

 $\mathbf{K} = \mathbf{Q}[X]/(T).$

T is a defining polynomial of **K**.

Two interesting structures:

- Group of ideals
- Group of units

K number field \Rightarrow finite extension of **Q** $\Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

 $\mathbf{K} = \mathbf{Q}[X]/(T).$

T is a defining polynomial of **K**.

Two interesting structures:

• Group of ideals $\label{eq:Quotient} \mbox{Quotient by principal ideals} \Rightarrow \mbox{class group $Cl(\mathcal{O}_K)$}$

Group of units
Finitely generated ⇒ fundamental units

K number field \Rightarrow finite extension of **Q** $\Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

 $\mathbf{K} = \mathbf{Q}[X]/(T).$

T is a defining polynomial of **K**.

Two interesting structures:

• Group of ideals $\label{eq:Quotient} \mbox{Quotient by principal ideals} \Rightarrow \mbox{class group $Cl(\mathcal{O}_K)$}$

Group of units
Finitely generated ⇒ fundamental units

Aim: Compute the structure of the class group.

State of the art

Subexponential L-notation :

 $L_N(0,c)\approx (\log N)^c \qquad L_N(1,c)\approx N^c$

 $L_N(\alpha, c) = \exp\left((c + o(1))(\log N)^{\alpha} (\log \log N)^{1-\alpha}\right).$

- Based on index calculus method
- Work from Biasse and Fieker, 2014

General case

Under GRH and smoothness heuristics, they have an $L_{|\Delta_{\mathbf{K}}|}(\frac{2}{3} + \varepsilon)$ algorithm for class group and unit group computation and an $L_{|\Delta_{\mathbf{K}}|}(\frac{1}{2})$ one if $n \leq \log(|\Delta_{\mathbf{K}}|)^{3/4-\varepsilon}$.

Conditional case

If K is defined by a *good* polynomial, we may reach a runtime in $L_{|\Delta_{\mathbf{K}}|}(a)$, with $\frac{1}{3} \le a < \frac{1}{2}$.

What is a *good* polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

What is a *good* polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

Definition

Let $T = \sum a_k X^k \in \mathbb{Z}[X]$. The height of T is defined as the maximal norm of its coefficients, namely

 $H(T) = \max_{k} |a_k|.$

What is a *good* polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

Definition

Let $T = \sum a_k X^k \in \mathbb{Z}[X]$. The height of T is defined as the maximal norm of its coefficients, namely

 $H(T) = \max_k |a_k|.$

Proposition

For every defining polynomial T of a degree- n number field ${\bf K},$ the discriminants satisfy

 $|\Delta_{\mathbf{K}}| \le |\Delta(T)| \le n^{2n} H(T)^{2n-2}.$

Definition

Let $n_0, d_0 > 0$ and $0 < \alpha < \frac{1}{2}$.

$$\mathscr{C}_{n_0,d_0,\alpha} = \begin{cases} \mathbf{K} = \mathbf{Q}[X]/(T) | & \deg(T) = n_0(\log|\Delta_{\mathbf{K}}|)^{\alpha}(1+o(1)) \\ \log H(T) = d_0(\log|\Delta_{\mathbf{K}}|)^{1-\alpha}(1+o(1)) \end{cases}$$

Theorem

There exists an $L_{|\Delta_{\mathbf{K}}|}(a)$ algorithm for class group computation for

$$a = \max\left(\alpha, \frac{1-\alpha}{2}\right).$$

If $\mathbf{K} \in \mathscr{C}_{n_0, d_0, \alpha}$, there exists T such that $H(T) = |\Delta_{\mathbf{K}}|^{\frac{\kappa}{n}}$, with $\kappa = n_0 d_0 (1 + o(1))$.

If $\mathbf{K} \in \mathscr{C}_{n_0, d_0, \alpha}$, there exists T such that $H(T) = |\Delta_{\mathbf{K}}|^{\frac{\kappa}{n}}$, with $\kappa = n_0 d_0 (1 + o(1))$.

Proposition

For every number field **K**, there exists a defining polynomial *T* s.t. $H(T) \leq 3^n \left(\frac{|\Delta_{\mathbf{K}}|}{n}\right)^{\frac{n}{2n-2}}.$

 $\begin{array}{l} \text{If } \mathbf{K} \in \mathscr{C}_{n_0,d_0,\alpha} \text{, there exists } T \text{ such that} \\ H(T) = |\Delta_{\mathbf{K}}|^{\frac{\kappa}{n}}, \quad \text{with } \kappa = n_0 d_0 (1+o(1)). \end{array}$

Proposition

For every number field **K**, there exists a defining polynomial *T* s.t. $H(T) \leq 3^n \left(\frac{|\Delta_{\mathbf{K}}|}{n}\right)^{\frac{n}{2n-2}}.$

Definition

Let $n_0, d_0 > 0, 0 < \alpha < 1$ and $1 - \alpha \le \gamma \le 1$.

$$\mathcal{D}_{n_0,d_0,\alpha,\gamma} = \begin{cases} \mathbf{K} = \frac{\mathbf{Q}[X]}{(T)} \mid & \deg(T) \le n_0 \left(\frac{\log|\Delta_{\mathbf{K}}|}{\log\log|\Delta_{\mathbf{K}}|}\right)^{\alpha} \\ & \log H(T) \le d_0 (\log|\Delta_{\mathbf{K}}|)^{\gamma} (\log\log|\Delta_{\mathbf{K}}|)^{1-\gamma} \end{cases}$$

 $\begin{array}{l} \text{If } \mathbf{K} \in \mathscr{C}_{n_0,d_0,\alpha} \text{, there exists } T \text{ such that} \\ H(T) = |\Delta_{\mathbf{K}}|^{\frac{\kappa}{n}}, \quad \text{with } \kappa = n_0 d_0 (1+o(1)). \end{array}$

Proposition

For every number field **K**, there exists a defining polynomial *T* s.t. $H(T) \leq 3^n \left(\frac{|\Delta_{\mathbf{K}}|}{n}\right)^{\frac{n}{2n-2}}.$

Definition

Let $n_0, d_0 > 0, 0 < \alpha < 1$ and $1 - \alpha \le \gamma \le 1$.

$$\mathcal{D}_{n_0,d_0,\alpha,\gamma} = \begin{cases} \mathbf{K} = \frac{\mathbf{Q}[X]}{(T)} \mid & \deg(T) \le n_0 \left(\frac{\log|\Delta_{\mathbf{K}}|}{\log\log|\Delta_{\mathbf{K}}|}\right)^{\alpha} \\ & \log H(T) \le d_0 (\log|\Delta_{\mathbf{K}}|)^{\gamma} (\log\log|\Delta_{\mathbf{K}}|)^{1-\gamma} \end{cases}$$

Every number field belongs to such a class $\mathcal{D}_{n_0,d_0,\alpha,\gamma}$.

Prior reduction algorithm

Cohen and Diaz y Diaz minimize the size of $T = \prod (X - \tau_j)$, defined as

$$S(T) = \sum |\tau_j|^2.$$

Equivalent to find a short vector in the lattice \mathscr{O}_K , because \mathscr{O}_K is generated by the vectors

$$\left[\sigma_1(\tau_j), \cdots, \sigma_n(\tau_j)\right]$$

Examples:

Input	Output
$x^3 - 5955x^2 + 18142x - 607593$	$x^3 - x^2 - 2100x + 38117$
$x^3 - 269463x^2 + 752031x - 518157$	$x^3 - x^2 - 1307x - 13359$
$x^3 - 482665x^2 + 773338x - 308749$	$x^3 - x^2 - 3210x + 61325$
$x^3 - 456191x^2 + 958783x - 499681$	$x^3 - x^2 - 936x - 7616$

Prior reduction algorithm

Cohen and Diaz y Diaz minimize the size of $T = \prod (X - \tau_j)$, defined as

$$S(T) = \sum |\tau_j|^2.$$

Equivalent to find a short vector in the lattice \mathscr{O}_K , because \mathscr{O}_K is generated by the vectors

$$\left[\sigma_1(\tau_j), \cdots, \sigma_n(\tau_j)\right]$$

Examples:

Input	Output
$x^3 + 6381x^2 + 4378x - 1216$	$x^3 - x^2 - 3537064x + 2193757452$
$x^3 - 9681x^2 - 5434x - 6901$	$x^3 - 31246021x - 67226458585$
$x^3 - 6665x^2 - 4318x - 2977$	$x^3 + 336681x - 419200237$
$x^3 - 6018x^2 - 1387x + 6161$	$x^3 - 12073495x - 16147208593$

Goal: Find the monic polynomial T_F of minimal height defining K.

Goal: Find the monic polynomial T_F of minimal height defining K.

Idea: Introduce weighted lattices and look for small vectors in them.

Goal: Find the monic polynomial T_F of minimal height defining **K**. **Idea:** Introduce weighted lattices and look for small vectors in them. Let θ_F root of $T_F \longleftrightarrow \nu(\theta_F) = [\sigma_1(\theta_F), \cdots, \sigma_n(\theta_F)] \in \mathcal{O}_{\mathbf{K}}$. **Goal:** Find the monic polynomial T_F of minimal height defining **K**.

Idea: Introduce weighted lattices and look for small vectors in them.

Let θ_F root of $T_F \longleftrightarrow v(\theta_F) = [\sigma_1(\theta_F), \cdots, \sigma_n(\theta_F)] \in \mathcal{O}_{\mathbf{K}}$.

Let c > 1 and $b^F = [b_1^F, \dots, b_n^F]$ defined by $b_j^F = \lceil \log_c |\sigma_j(\theta_F)| \rceil$. We introduce a *weighted* copy of $\mathcal{O}_{\mathbf{K}}$ in \mathcal{C}^n , generated by:

$$\widetilde{\Omega_i} = \left[\frac{\sigma_1(\omega_i)}{c^{b_1^F}}, \cdots, \frac{\sigma_n(\omega_i)}{c^{b_n^F}}\right]$$

Goal: Find the monic polynomial T_F of minimal height defining **K**.

Idea: Introduce weighted lattices and look for small vectors in them.

Let θ_F root of $T_F \longleftrightarrow v(\theta_F) = [\sigma_1(\theta_F), \cdots, \sigma_n(\theta_F)] \in \mathcal{O}_{\mathbf{K}}$.

Let c > 1 and $b^F = [b_1^F, \dots, b_n^F]$ defined by $b_j^F = \lceil \log_c |\sigma_j(\theta_F)| \rceil$. We introduce a *weighted* copy of $\mathcal{O}_{\mathbf{K}}$ in \mathcal{C}^n , generated by:

$$\widetilde{\Omega_i} = \left[\frac{\sigma_1(\omega_i)}{c^{b_1^F}}, \cdots, \frac{\sigma_n(\omega_i)}{c^{b_n^F}}\right]$$

By construction, $|\tilde{\nu}(\theta_F)_i| \le 1$ and $\|\tilde{\nu}(\theta_F)\|_2 \le \sqrt{n}$.

Differences between the two algorithms

Shape of the vectors found by the algorithm of Cohen:

Shape of the vectors we find:

As the constant coefficient of the polynomial is the product of all the roots, we prefer vectors of the second family.

• If $\mathbf{K} \in \mathcal{D}_{n_0, d_0, \alpha, \gamma}$, we find the minimal defining polynomial T in time $L_{|\Delta_{\mathbf{K}}|}(\alpha)$.

- If $\mathbf{K} \in \mathcal{D}_{n_0, d_0, \alpha, \gamma}$, we find the minimal defining polynomial T in time $L_{|\Delta_{\mathbf{K}}|}(\alpha)$.
- If $\gamma = 1 \alpha$, we can apply the algorithm of Biasse and Fieker and find the class group in $L_{|\Delta_{\mathbf{K}}|}(a)$, $a = \max(\alpha, \frac{1-\alpha}{2})$.

- If $\mathbf{K} \in \mathcal{D}_{n_0, d_0, \alpha, \gamma}$, we find the minimal defining polynomial T in time $L_{|\Delta_{\mathbf{K}}|}(\alpha)$.
- If $\gamma = 1 \alpha$, we can apply the algorithm of Biasse and Fieker and find the class group in $L_{|\Delta_{\mathbf{K}}|}(a)$, $a = \max(\alpha, \frac{1-\alpha}{2})$.

Theorem

Under GRH and smoothness heuristics, for every $\mathbf{K} \in \mathcal{D}_{n_0, d_0, \alpha, \gamma}$, $\alpha < \frac{1}{2}$, there exists an $L_{|\Delta_{\mathbf{K}}|}(a)$ algorithm for class group computation with

$$a = \max\left(\alpha, \frac{\gamma}{2}\right).$$

General case:

First general subexponential algorithm.

Special case:

Only if **K** is defined by *T* such that $H(T) = L_{|\Delta_{\mathbf{K}}|} (1 - \alpha)$.

General case:

Without any condition.

K is defined by the polynomial

 $x^5 - 2x^4 - 8001397580x^3 - 31542753393650x^2 + 3636653302451131875x + 4818547529425280067500$

Magma V2.22-2 finds the class group – assuming GRH – in about 285 seconds.

With our implementation, we reduce this defining polynomial to

 $T = x^5 - 5843635x^4 + 931633x^2 + 6577x - 8570.$

K is defined by the polynomial

 $x^5 - 2x^4 - 8001397580x^3 - 31542753393650x^2 + 3636653302451131875x + 4818547529425280067500$

Magma V2.22-2 finds the class group – assuming GRH – in about 285 seconds.

With our implementation, we reduce this defining polynomial to

$$T = x^5 - 5843635x^4 + 931633x^2 + 6577x - 8570.$$

Magma V2.19-10 has class group computation not as optimized as in V2.22, but works with the input polynomial:

- with T: about 140 seconds,
- with the "reduced" one: about 3240 seconds.

Danke