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Number fields

K number field ⇒ finite extension of Q ⇒ ∃T ∈ Z[X ] monic s.t.

K = Q[X ]/(T).

T is a defining polynomial of K.

Two interesting structures:
Group of ideals

Quotient by principal ideals ⇒ class group Cl(OK)

Group of units

Finitely generated ⇒ fundamental units

Aim: Compute the structure of the class group.

Alexandre Gélin Reducing number field defining polynomials



Number fields

K number field ⇒ finite extension of Q ⇒ ∃T ∈ Z[X ] monic s.t.

K = Q[X ]/(T).

T is a defining polynomial of K.

Two interesting structures:
Group of ideals

Quotient by principal ideals ⇒ class group Cl(OK)

Group of units

Finitely generated ⇒ fundamental units

Aim: Compute the structure of the class group.

Alexandre Gélin Reducing number field defining polynomials



Number fields

K number field ⇒ finite extension of Q ⇒ ∃T ∈ Z[X ] monic s.t.

K = Q[X ]/(T).

T is a defining polynomial of K.

Two interesting structures:
Group of ideals

Quotient by principal ideals ⇒ class group Cl(OK)

Group of units
Finitely generated ⇒ fundamental units

Aim: Compute the structure of the class group.

Alexandre Gélin Reducing number field defining polynomials



Number fields

K number field ⇒ finite extension of Q ⇒ ∃T ∈ Z[X ] monic s.t.

K = Q[X ]/(T).

T is a defining polynomial of K.

Two interesting structures:
Group of ideals

Quotient by principal ideals ⇒ class group Cl(OK)

Group of units
Finitely generated ⇒ fundamental units

Aim: Compute the structure of the class group.

Alexandre Gélin Reducing number field defining polynomials



State of the art

Subexponential L-notation : LN (0,c) ≈ (logN)c LN (1,c) ≈ Nc

LN (α,c) = exp
(
(c+o(1))(logN)α(loglogN)1−α)

.

Based on index calculus method
Work from Biasse and Fieker, 2014

General case

Under GRH and smoothness heuristics, they have an L|∆K|(
2
3 + ε)

algorithm for class group and unit group computation and an L|∆K|(
1
2 )

one if n ≤ log(|∆K|)3/4−ε.

Conditional case
If K is defined by a good polynomial, we may reach a runtime in
L|∆K|(a), with 1

3 ≤ a < 1
2 .
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What is a good polynomial ?

We want a polynomial that defines a fixed number field:
The degree is fixed,
We want the coefficients as small as possible.

Definition

Let T = ∑
akX k ∈ Z[X ]. The height of T is defined as the maximal

norm of its coefficients, namely

H(T) = max
k

|ak|.

Proposition
For every defining polynomial T of a degree-n number field K, the
discriminants satisfy

|∆K| ≤ |∆(T)| ≤ n2nH(T)2n−2.
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Classes from Biasse and Fieker work

Definition

Let n0,d0 > 0 and 0 <α< 1
2 .

Cn0,d0,α =
{

K = Q[X ]/(T)
∣∣ deg(T) = n0(log |∆K|)α(1+o(1))

logH(T) = d0(log |∆K|)1−α(1+o(1))

}

Theorem
There exists an L|∆K|(a) algorithm for class group computation for

a = max

(
α,

1−α
2

)
.
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Minimal height

If K ∈Cn0,d0,α, there exists T such that
H(T) = |∆K|

κ
n , with κ= n0d0(1+o(1)).

Proposition
For every number field K, there exists a defining polynomial T s.t.

H(T) ≤ 3n
( |∆K|

n

) n
2n−2

.

Definition
Let n0,d0 > 0, 0 <α< 1 and 1−α≤ γ≤ 1.

Dn0,d0,α,γ =
{

K = Q[X ]

(T)

∣∣ deg(T) ≤ n0

(
log |∆K|

loglog |∆K|
)α

logH(T) ≤ d0(log |∆K|)γ(loglog |∆K|)1−γ

}

Every number field belongs to such a class Dn0,d0,α,γ.
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Prior reduction algorithm

Cohen and Diaz y Diaz minimize the size of T =∏
(X −τj), defined

as
S(T) =∑ |τj|2.

Equivalent to find a short vector in the lattice OK, because OK is
generated by the vectors[

σ1(τj), · · · ,σn(τj)
]

, Examples:

Input Output
x3 −5955x2 +18142x−607593 x3 −x2 −2100x+38117

x3 −269463x2 +752031x−518157 x3 −x2 −1307x−13359
x3 −482665x2 +773338x−308749 x3 −x2 −3210x+61325
x3 −456191x2 +958783x−499681 x3 −x2 −936x−7616
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(X −τj), defined

as
S(T) =∑ |τj|2.

Equivalent to find a short vector in the lattice OK, because OK is
generated by the vectors[

σ1(τj), · · · ,σn(τj)
]

/ Examples:

Input Output
x3 +6381x2 +4378x−1216 x3 −x2 −3537064x+2193757452
x3 −9681x2 −5434x−6901 x3 −31246021x−67226458585
x3 −6665x2 −4318x−2977 x3 +336681x−419200237
x3 −6018x2 −1387x+6161 x3 −12073495x−16147208593
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Our algorithm

Goal: Find the monic polynomial TF of minimal height defining K.

Idea: Introduce weighted lattices and look for small vectors in them.

Let θF root of TF ←→ v(θF ) = [σ1(θF ), · · · ,σn(θF )] ∈OK.

Let c > 1 and bF = [bF
1 , · · · ,bF

n] defined by bF
j = ⌈

logc |σj(θF )|⌉.
We introduce a weighted copy of OK in C n, generated by:

Ω̃i =
[
σ1(ωi)

cbF
1

, · · · ,
σn(ωi)

cbF
n

]
.

By construction, |ṽ(θF )i| ≤ 1 and ‖ṽ(θF )‖2 ≤
p

n.
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Differences between the two algorithms

Shape of the vectors found by the algorithm of Cohen:

Shape of the vectors we find:

As the constant coefficient of the polynomial is the product of all
the roots, we prefer vectors of the second family.
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Final results

If K ∈Dn0,d0,α,γ, we find the minimal defining polynomial T in
time L|∆K|(α).

If γ= 1−α, we can apply the algorithm of Biasse and Fieker
and find the class group in L|∆K|(a), a = max

(
α, 1−α

2

)
.

Theorem

Under GRH and smoothness heuristics, for every K ∈Dn0,d0,α,γ, α< 1
2 ,

there exists an L|∆K|(a) algorithm for class group computation with

a = max
(
α,
γ

2

)
.
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State of the art [BF14]

General case:

L|∆K|
(1

2

) L|∆K|
(2

3 +ε
)

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

First general subexponential algorithm.
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State of the art [BF14]

Special case:

L|∆K|
(1

2

) L|∆K|
(2

3 +ε
)

L|∆K|
(
max(α, 1−α

2 )
)

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Only if K is defined by T such that H(T) = L|∆K| (1−α).
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This work

General case:

depending on γ

L|∆K|
(
max(α, γ2 )

)

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Without any condition.
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Practically

K is defined by the polynomial
x5 −2x4 −8001397580x3 −31542753393650x2 +3636653302451131875x+4818547529425280067500

.
Magma V2.22-2 finds the class group – assuming GRH – in about
285 seconds.
With our implementation, we reduce this defining polynomial to

T = x5 −5843635x4 +931633x2 +6577x−8570.

Magma V2.19-10 has class group computation not as optimized as
in V2.22, but works with the input polynomial:

with T : about 140 seconds,
with the “reduced” one: about 3240 seconds.
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Thanks

Danke
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