Reducing number field defining polynomials: An application to class group computations

Alexandre Gélin and Antoine Joux

Laboratoire d'Informatique de Paris 6 - Sorbonne Universités UPMC
Chaire de Cryptologie, Fondation UPMC

> ANTS XII - Kaiserslautern $2016 / 09 / 02$

Number fields

\mathbf{K} number field \Rightarrow finite extension of $\mathbf{Q} \Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

$$
\mathbf{K}=\mathbf{Q}[X] /(T) .
$$

T is a defining polynomial of \mathbf{K}.

Number fields

\mathbf{K} number field \Rightarrow finite extension of $\mathbf{Q} \Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

$$
\mathbf{K}=\mathbf{Q}[X] /(T) .
$$

T is a defining polynomial of \mathbf{K}.

Two interesting structures:

- Group of ideals
- Group of units

Number fields

\mathbf{K} number field \Rightarrow finite extension of $\mathbf{Q} \Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

$$
\mathbf{K}=\mathbf{Q}[X] /(T) .
$$

T is a defining polynomial of \mathbf{K}.

Two interesting structures:

- Group of ideals

Quotient by principal ideals \Rightarrow class group $\operatorname{Cl}\left(\mathscr{O}_{\mathbf{K}}\right)$

- Group of units

Finitely generated \Rightarrow fundamental units

Number fields

\mathbf{K} number field \Rightarrow finite extension of $\mathbf{Q} \Rightarrow \exists T \in \mathbf{Z}[X]$ monic s.t.

$$
\mathbf{K}=\mathbf{Q}[X] /(T) .
$$

T is a defining polynomial of \mathbf{K}.

Two interesting structures:

- Group of ideals

Quotient by principal ideals \Rightarrow class group $\operatorname{Cl}\left(\mathscr{O}_{\mathbf{K}}\right)$

- Group of units

Finitely generated \Rightarrow fundamental units

Aim: Compute the structure of the class group.

State of the art

Subexponential L-notation :

$$
L_{N}(0, c) \approx(\log N)^{c} \quad L_{N^{(1, c)}} \approx N^{c}
$$

$$
L_{N}(\alpha, c)=\exp \left((c+o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right)
$$

- Based on index calculus method
- Work from Biasse and Fieker, 2014

General case

Under GRH and smoothness heuristics, they have an $L_{\left|\Delta_{K}\right|}\left(\frac{2}{3}+\varepsilon\right)$ algorithm for class group and unit group computation and an $L_{\left|\Delta_{\mathbf{K}}\right|}\left(\frac{1}{2}\right)$ one if $n \leq \log \left(\left|\Delta_{\mathbf{K}}\right|\right)^{3 / 4-\varepsilon}$.

Conditional case

If \mathbf{K} is defined by a good polynomial, we may reach a runtime in $L_{\left|\Delta_{\mathbf{K}}\right|}(a)$, with $\frac{1}{3} \leq a<\frac{1}{2}$.

What is a good polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

What is a good polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

Definition

Let $T=\sum a_{k} X^{k} \in \mathbf{Z}[X]$. The height of T is defined as the maximal norm of its coefficients, namely

$$
H(T)=\max _{k}\left|a_{k}\right| .
$$

What is a good polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

Definition

Let $T=\sum a_{k} X^{k} \in \mathbf{Z}[X]$. The height of T is defined as the maximal norm of its coefficients, namely

$$
H(T)=\max _{k}\left|a_{k}\right| .
$$

Proposition

For every defining polynomial T of a degree- n number field \mathbf{K}, the discriminants satisfy

$$
\left|\Delta_{\mathbf{K}}\right| \leq|\Delta(T)| \leq n^{2 n} H(T)^{2 n-2} .
$$

Classes from Biasse and Fieker work

Definition

Let $n_{0}, d_{0}>0$ and $0<\alpha<\frac{1}{2}$.

$$
\mathscr{C}_{n_{0}, d_{0}, \alpha}=\left\{\mathbf{K}=\mathbf{Q}[X] /(T) \left\lvert\, \begin{array}{l}
\operatorname{deg}(T)=n_{0}\left(\log \left|\Delta_{\mathbf{K}}\right|\right)^{\alpha}(1+o(1)) \\
\log H(T)=d_{0}\left(\log \left|\Delta_{\mathbf{K}}\right|\right)^{1-\alpha}(1+o(1))
\end{array}\right.\right\}
$$

Theorem

There exists an $L_{\left|\Delta_{\mathbf{K}}\right|}(a)$ algorithm for class group computation for

$$
a=\max \left(\alpha, \frac{1-\alpha}{2}\right) .
$$

Minimal height

If $\mathbf{K} \in \mathscr{C}_{n_{0}, d_{0}, \alpha}$, there exists T such that

$$
H(T)=\left|\Delta_{\mathbf{K}}\right|^{\frac{\kappa}{n}}, \quad \text { with } \kappa=n_{0} d_{0}(1+o(1)) .
$$

Minimal height

If $\mathbf{K} \in \mathscr{C}_{n_{0}, d_{0}, \alpha}$, there exists T such that

$$
H(T)=\left|\Delta_{\mathbf{K}}\right|^{\frac{\kappa}{n}}, \quad \text { with } \kappa=n_{0} d_{0}(1+o(1)) .
$$

Proposition

For every number field \mathbf{K}, there exists a defining polynomial T s.t.

$$
H(T) \leq 3^{n}\left(\frac{\left|\Delta_{\mathbf{K}}\right|}{n}\right)^{\frac{n}{2 n-2}}
$$

Minimal height

If $\mathbf{K} \in \mathscr{C}_{n_{0}, d_{0}, \alpha}$, there exists T such that

$$
H(T)=\left|\Delta_{\mathbf{K}}\right|^{\frac{\kappa}{n}}, \quad \text { with } \kappa=n_{0} d_{0}(1+o(1))
$$

Proposition

For every number field \mathbf{K}, there exists a defining polynomial T s.t.

$$
H(T) \leq 3^{n}\left(\frac{\left|\Delta_{\mathbf{K}}\right|}{n}\right)^{\frac{n}{2 n-2}} .
$$

Definition

Let $n_{0}, d_{0}>0,0<\alpha<1$ and $1-\alpha \leq \gamma \leq 1$.

$$
\mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}=\left\{\mathbf{K}=\frac{\mathbf{Q}[X]}{(T)} \left\lvert\, \begin{array}{l}
\operatorname{deg}(T) \leq n_{0}\left(\frac{\log \left|\Delta_{\mathbf{K}}\right|}{\log \log \mid \Delta_{\mathbf{K}}}\right)^{\alpha} \\
\log H(T) \leq d_{0}\left(\log \left|\Delta_{\mathbf{K}}\right|\right)^{\gamma}\left(\log \log \left|\Delta_{\mathbf{K}}\right|\right)^{1-\gamma}
\end{array}\right.\right\}
$$

Minimal height

If $\mathbf{K} \in \mathscr{C}_{n_{0}, d_{0}, \alpha}$, there exists T such that

$$
H(T)=\left|\Delta_{\mathbf{K}}\right|^{\frac{\kappa}{n}}, \quad \text { with } \kappa=n_{0} d_{0}(1+o(1))
$$

Proposition

For every number field \mathbf{K}, there exists a defining polynomial T s.t.

$$
H(T) \leq 3^{n}\left(\frac{\left|\Delta_{\mathbf{K}}\right|}{n}\right)^{\frac{n}{2 n-2}}
$$

Definition

Let $n_{0}, d_{0}>0,0<\alpha<1$ and $1-\alpha \leq \gamma \leq 1$.

$$
\mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}=\left\{\mathbf{K}=\frac{\mathbf{Q}[X]}{(T)} \left\lvert\, \begin{array}{l}
\operatorname{deg}(T) \leq n_{0}\left(\frac{\log \left|\Delta_{\mathbf{K}}\right|}{\log \log \mid \Delta_{\mathbf{K}}}\right)^{\alpha} \\
\log H(T) \leq d_{0}\left(\log \left|\Delta_{\mathbf{K}}\right|\right)^{\gamma}\left(\log \log \left|\Delta_{\mathbf{K}}\right|\right)^{1-\gamma}
\end{array}\right.\right\}
$$

Every number field belongs to such a class $\mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}$.

Prior reduction algorithm

Cohen and Diaz y Diaz minimize the size of $T=\Pi\left(X-\tau_{j}\right)$, defined as

$$
S(T)=\sum\left|\tau_{j}\right|^{2} .
$$

Equivalent to find a short vector in the lattice $\mathscr{O}_{\mathbf{K}}$, because $\mathscr{O}_{\mathbf{K}}$ is generated by the vectors

$$
\left[\sigma_{1}\left(\tau_{j}\right), \cdots, \sigma_{n}\left(\tau_{j}\right)\right]
$$

(). Examples:

Input	Output
$x^{3}-5955 x^{2}+18142 x-607593$	$x^{3}-x^{2}-2100 x+38117$
$x^{3}-269463 x^{2}+752031 x-518157$	$x^{3}-x^{2}-1307 x-13359$
$x^{3}-482665 x^{2}+773338 x-308749$	$x^{3}-x^{2}-3210 x+61325$
$x^{3}-456191 x^{2}+958783 x-499681$	$x^{3}-x^{2}-936 x-7616$

Prior reduction algorithm

Cohen and Diaz y Diaz minimize the size of $T=\Pi\left(X-\tau_{j}\right)$, defined as

$$
S(T)=\sum\left|\tau_{j}\right|^{2} .
$$

Equivalent to find a short vector in the lattice $\mathscr{O}_{\mathbf{K}}$, because $\mathscr{O}_{\mathbf{K}}$ is generated by the vectors

$$
\left[\sigma_{1}\left(\tau_{j}\right), \cdots, \sigma_{n}\left(\tau_{j}\right)\right]
$$

(). Examples:

Input	Output
$x^{3}+6381 x^{2}+4378 x-1216$	$x^{3}-x^{2}-3537064 x+2193757452$
$x^{3}-9681 x^{2}-5434 x-6901$	$x^{3}-31246021 x-67226458585$
$x^{3}-6665 x^{2}-4318 x-2977$	$x^{3}+336681 x-419200237$
$x^{3}-6018 x^{2}-1387 x+6161$	$x^{3}-12073495 x-16147208593$

Our algorithm

Goal: Find the monic polynomial T_{F} of minimal height defining \mathbf{K}.

Our algorithm

Goal: Find the monic polynomial T_{F} of minimal height defining \mathbf{K}.
Idea: Introduce weighted lattices and look for small vectors in them.

Our algorithm

Goal: Find the monic polynomial T_{F} of minimal height defining \mathbf{K}.
Idea: Introduce weighted lattices and look for small vectors in them.
Let θ_{F} root of $T_{F} \longleftrightarrow v\left(\theta_{F}\right)=\left[\sigma_{1}\left(\theta_{F}\right), \cdots, \sigma_{n}\left(\theta_{F}\right)\right] \in \mathscr{O}_{\mathbf{K}}$.

Our algorithm

Goal: Find the monic polynomial T_{F} of minimal height defining \mathbf{K}.
Idea: Introduce weighted lattices and look for small vectors in them.
Let θ_{F} root of $T_{F} \longleftrightarrow v\left(\theta_{F}\right)=\left[\sigma_{1}\left(\theta_{F}\right), \cdots, \sigma_{n}\left(\theta_{F}\right)\right] \in \mathscr{O}_{\mathbf{K}}$.
Let $c>1$ and $b^{F}=\left[b_{1}^{F}, \cdots, b_{n}^{F}\right]$ defined by $b_{j}^{F}=\left\lceil\log _{c}\left|\sigma_{j}\left(\theta_{F}\right)\right|\right\rceil$. We introduce a weighted copy of $\mathscr{O}_{\mathbf{K}}$ in \mathscr{C}^{n}, generated by:

$$
\widetilde{\Omega_{i}}=\left[\frac{\sigma_{1}\left(\omega_{i}\right)}{c^{b_{1}^{F}}}, \cdots, \frac{\sigma_{n}\left(\omega_{i}\right)}{c^{b_{n}^{F}}}\right]
$$

Our algorithm

Goal: Find the monic polynomial T_{F} of minimal height defining \mathbf{K}.
Idea: Introduce weighted lattices and look for small vectors in them.
Let θ_{F} root of $T_{F} \longleftrightarrow v\left(\theta_{F}\right)=\left[\sigma_{1}\left(\theta_{F}\right), \cdots, \sigma_{n}\left(\theta_{F}\right)\right] \in \mathscr{O}_{\mathbf{K}}$.
Let $c>1$ and $b^{F}=\left[b_{1}^{F}, \cdots, b_{n}^{F}\right]$ defined by $b_{j}^{F}=\left\lceil\log _{c}\left|\sigma_{j}\left(\theta_{F}\right)\right|\right\rceil$.
We introduce a weighted copy of $\mathscr{O}_{\mathbf{K}}$ in \mathscr{C}^{n}, generated by:

$$
\widetilde{\Omega_{i}}=\left[\frac{\sigma_{1}\left(\omega_{i}\right)}{b^{b_{1}^{F}}}, \cdots, \frac{\sigma_{n}\left(\omega_{i}\right)}{c^{b_{n}^{F}}}\right] .
$$

By construction, $\left|\tilde{v}\left(\theta_{F}\right)_{i}\right| \leq 1$ and $\left\|\tilde{v}\left(\theta_{F}\right)\right\|_{2} \leq \sqrt{n}$.

Differences between the two algorithms

Shape of the vectors found by the algorithm of Cohen:

Shape of the vectors we find:

As the constant coefficient of the polynomial is the product of all the roots, we prefer vectors of the second family.

Final results

- If $\mathbf{K} \in \mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}$, we find the minimal defining polynomial T in time $L_{\left|\Delta_{K}\right|}(\alpha)$.

Final results

- If $\mathbf{K} \in \mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}$, we find the minimal defining polynomial T in time $L_{\left|\Delta_{\mathbf{K}}\right|}(\alpha)$.
- If $\gamma=1-\alpha$, we can apply the algorithm of Biasse and Fieker and find the class group in $L_{\left|\Delta_{\mathbf{K}}\right|}(a), a=\max \left(\alpha, \frac{1-\alpha}{2}\right)$.

Final results

- If $\mathbf{K} \in \mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}$, we find the minimal defining polynomial T in time $L_{\left|\Delta_{\mathbf{K}}\right|}(\alpha)$.
- If $\gamma=1-\alpha$, we can apply the algorithm of Biasse and Fieker and find the class group in $L_{\left|\Delta_{\mathbf{K}}\right|}(a), a=\max \left(\alpha, \frac{1-\alpha}{2}\right)$.

Theorem

Under GRH and smoothness heuristics, for every $\mathbf{K} \in \mathscr{D}_{n_{0}, d_{0}, \alpha, \gamma}, \alpha<\frac{1}{2}$, there exists an $L_{\left|\Delta_{\mathbf{K}}\right|}(a)$ algorithm for class group computation with

$$
a=\max \left(\alpha, \frac{\gamma}{2}\right)
$$

State of the art [BF14]

General case:

First general subexponential algorithm.

State of the art [BF14]

Special case:

Only if \mathbf{K} is defined by T such that $H(T)=L_{\left|\Delta_{\mathbf{K}}\right|}(1-\alpha)$.

This work

General case:

Without any condition.

Practically

\mathbf{K} is defined by the polynomial

$$
x^{5}-2 x^{4}-8001397580 x^{3}-31542753393650 x^{2}+3636653302451131875 x+4818547529425280067500
$$

Magma V2.22-2 finds the class group - assuming GRH - in about 285 seconds.
With our implementation, we reduce this defining polynomial to

$$
T=x^{5}-5843635 x^{4}+931633 x^{2}+6577 x-8570 .
$$

Practically

\mathbf{K} is defined by the polynomial
$x^{5}-2 x^{4}-8001397580 x^{3}-31542753393650 x^{2}+3636653302451131875 x+4818547529425280067500$
Magma V2.22-2 finds the class group - assuming GRH - in about 285 seconds.
With our implementation, we reduce this defining polynomial to

$$
T=x^{5}-5843635 x^{4}+931633 x^{2}+6577 x-8570 .
$$

Magma V2.19-10 has class group computation not as optimized as in V 2.22 , but works with the input polynomial:

- with T : about 140 seconds,
- with the "reduced" one: about 3240 seconds.

Thanks

Danke

Alexandre Gélin

