
Reducing number field defining polynomials:
An application to class group computations

Alexandre Gélin and Antoine Joux

Abstract

In this paper, we describe how to compute smallest monic polynomials that define a given number
field K. We make use of the one-to-one correspondence between monic defining polynomials of K
and algebraic integers that generate K. Thus, a smallest polynomial corresponds to a vector in
the lattice of integers of K and this vector is short in some sense. The main idea is to consider
weighted coordinates for the vectors of the lattice of integers of K. This allows us to find the
desired polynomial by enumerating short vectors in these weighted lattices. In the context of the
subexponential algorithm of Biasse and Fieker for computing class groups, this algorithm can
be used as a precomputation step that speeds up the rest of the computation. It also widens the
applicability of their faster conditional method – which requires a defining polynomial of small
height – to a much larger set of number field descriptions.

1. Introduction

Computing the class group and the regulator of a number field are two major tasks in
algorithmic algebraic number theory. The first results only addressed quadratic number fields:
Shanks [15, 16] described an algorithm based on the baby-step–giant-step method which
computes the class group and the regulator in exponential runtime O(|∆K|

1
5) under the

extended Riemann hypothesis, where ∆K denotes the absolute discriminant of the considered
number field.

The first subexponential algorithm, proposed by Hafner and McCurley [8], computes the
class group structure of an imaginary quadratic number field in heuristic time L|∆K|(

1
2 ,
√

2).
This L-notation is classical when presenting index calculus algorithms with subexponential
complexity. Given two constants α and c with α ∈ [0, 1] and c ≥ 0, LN (α, c) is used as a
shorthand for:

exp
(
(c+ o(1))(logN)α(log logN)1−α) ,

where o(1) tends to 0 as N tends to infinity.
In [3], Buchmann extended this method to all number fields, obtaining a heuristic complexity

of L|∆K|(
1
2 , 1.7), for any arbitrary but fixed number field degree. Recently, Biasse and Fieker [2]

obtained a subexponential complexity for all number fields, without restriction on the extension
degree. They achieved a L|∆K|(

2
3 + ε,O(1)) complexity† in the general case and L|∆K|(

1
2 , O(1))

when the extension degree n satisfies the inequality n ≤ (log |∆K|)3/4−ε. Furthermore, for some
restricted classes of number fields they achieve an even better L|∆K|(a,O(1)) complexity with a
possibly as low as 1

3 . More precisely, they achieve this improved complexity when the polynomial
used to define the number field has small coefficients compared to the discriminant of the field.

Contribution. Our main result is an algorithm that given a number field, described by some
defining polynomial, computes a reduced polynomial, i.e. a monic polynomial with minimal

This work has been supported in part by the European Union’s H2020 Programme under grant agreement
number ICT-644209.
†For an arbitrary small ε > 0.

Page 2 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

coefficients defining this number field. The complexity of the reduction algorithm is of the
form L|∆K | where the first constant depends on the extension degree n and the second one on
the size of the coefficients of any minimal defining polynomial‡. We are especially interested
in the fields for which it is possible to find a reduced polynomial whose coefficients are small
compared to the field discriminant. Indeed, for these fields, using a reduced polynomial allows
the algorithm of Biasse and Fieker to run in time L|∆K|(a,O(1)) with 1

3 ≤ a <
1
2 . Thus, by

running our algorithm as a preliminary step to theirs, we generalize their approach, with its
reduced complexity, to a wider class of number field descriptions.

Outline. The article is organized as follows. In Section 2, we introduce the necessary
notation and tools. Section 3 presents our motivations for finding such an algorithm in the
context of class group computations. In Section 4, we present the current state of the art
for reducing number field defining polynomials, namely the algorithm of Cohen and Diaz y
Diaz. Our new reduction algorithm is described in Section 5 and its complexity is analyzed in
Section 6. Finally, some examples of its application to class group computations are shown in
Section 7.

2. A reminder on number fields and their defining polynomials

As usual, an algebraic number field is given as the quotient of Q[X] by a preferably monic
irreducible polynomial in Z[X]. Let K be a number field of degree n = [K : Q] and denote by OK
the ring of integers of K. It is always possible to rewrite K as Q[θ] with θ in OK. Since θ is
an algebraic integer, its minimal polynomial T is monic, moreover as θ generates K the degree
of T is n. As a consequence we have rewritten:

K ' Q[X]/(T), with T monic in Z[X].

In the sequel, we only consider such monic polynomials in Z[X], each of them corresponding
to an integer that generates K. We denote by tk the coefficients of T and by τj its (necessarily
distinct) roots. Thus, we have:

T (X) =

n∑
k=0

tkX
k =

n∏
j=1

(X − τj).

We also denote by H(T) = maxk{|tk|} the height of the polynomial.
Our main goal is, given Q[θ], to find an algebraic integer θ′ in OK that minimizes the height of

its minimal polynomial among the algebraic integers such that Q[θ′] = Q[θ] . Indeed, a defining
polynomial with smaller coefficients allows for more efficient computations in the number field.
A particularly relevant fact is that when bounding the norm of algebraic integers expressed as
polynomials in θ′, the height of the defining polynomial of θ′ appears in the bound.

2.1. Discriminants

In the context of number fields, two important notions of discriminant appear. The
discriminant of the defining polynomial T denoted by ∆(T) and the discriminant of the number
field K denoted by ∆K. These values are related but different in general.

Given an integral basis ω1, . . . , ωn ofOK, i.e. a Z-basis of the free moduleOK, the discriminant
of K is the determinant† of the n× n matrix M whose entries are Mi,j = TrK/Q(ωiωj).
Let σ1, . . . , σn denote the complex embeddings of K in C. The discriminant also can be

‡Note that this size is the same for all minimal defining polynomials.
†The value is independent of the choice of integral basis for OK.

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 3 of 18

interpreted as the square of the determinant of the matrix B whose entries are Bi,j = σi(ωj).
Indeed, the trace matrix is exactly M = tB ·B.

For a polynomial T =
∑
tkX

k of degree n, its discriminant is defined as

∆(T) = (−1)
n(n−1)

2
1

tn
Res(T, T ′),

where Res(T, T ′) is the resultant of T and its derivative. Note that, despite the fact that we
only consider monic polynomials, we give here the general formula that includes the leading
term tn.

The link with the discriminant of the field K comes from the fact that the discriminant of
a monic polynomial T corresponds to the discriminant of the suborder† of OK defined by T ,
i.e. Z[θ] where θ is a root of T . This implies:

∆(T) = C2∆K,

where C ∈ N is the index of the suborder C =
[
OK : Z[θ]

]
.

Since we desire to find polynomials with a small height that define K, it is useful to find
relations between the discriminant ∆(T) – known up to the C2 factor – and the height H(T).
A first relation relies on Hadamard’s inequality. Indeed, the resultant of T and T ′ can be
computed as the determinant of a (2n− 1)× (2n− 1) matrix whose entries are all bounded
by nH(T) in absolute value. As a consequence:

|∆K| ≤ |∆(T)| ≤
(
n
√

2n− 1 H(T)
)2n−1

. (2.1)

2.2. Mahler measure

The Mahler measure [10, 11] of a polynomial T , denoted by M(T), is defined

by logM(T) =
∫1

0
log |T (e2iπt)|dt. Thanks to Jensen’s formula, it can also be written in the

alternative form:

M(T) = |tn|
n∏
j=1

max (1, |τj |) ,

which is more convenient for our purpose. Again, despite considering monic polynomials, we
include tn for the sake of generality.

The link between the Mahler measure and the height of a polynomial is quite tight and
can be illustrated by the two following inequalities. First, Mahler shows in [11] that for all
k ∈ {0, . . . , n}, we have |tk| ≤

(
n
k

)
M(T) thus:

H(T) ≤
(
n

bn2 c

)
M(T) ≤ 2n M(T) (2.2)

In addition, it is proven in [13] that:

M(T) ≤

(
n∑
i=0

|ti|2
) 1

2

which implies M(T) ≤
√
n+ 1 H(T). (2.3)

Using the Mahler measure, it is possible to refine the bound on |∆(T)| we derived from
Hadamard’s inequality (see [12, Theorem 1]) and to obtain:

|∆(T)| ≤ nnM(T)2n−2. (2.4)

†Here, the fact that T is monic is essential. Otherwise, Z[θ] would not be a suborder of OK.

Page 4 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

Proposition 2.1. Let T be a monic irreducible polynomial of degree n ≥ 2. Then T defines
a number field K whose discriminant ∆K satisfies

|∆K| ≤ |∆(T)| ≤ n2nH(T)2n−2.

Proof. It is an almost direct consequence of combining (2.3) and (2.4) which yields the
improved bound for the discriminant. It remains to check the simple fact that:

∀n ∈ N∗, (n+ 1)n−1 ≤ nn.

3. Motivations and link with class group computation

Our main motivation for reducing defining polynomials of number fields is to speed up the
computations performed to determine class groups. Indeed, in [2] Biasse and Fieker propose
a complexity improvement for class group computation when the number field is defined by
a polynomial with small enough coefficients. More precisely, given parameters n0, d0 > 0 and
0 < α < 1

2 , they introduced the classes† Cn0,d0,α of number fields K = Q[θ] = Q[X]/(T) such
that the defining polynomial T ∈ Z[X] of K satisfies

n = deg(T) = n0(log |∆K|)α(1 + o(1)) and d = logH(T) = d0(log |∆K|)1−α(1 + o(1)), (3.1)

where ∆K is the discriminant of K – equivalently, the discriminant of the order OK. For these
classes, they state the following theorem:

Theorem 3.1 ([2, Theorem 6.2]). Under GRH and smoothness heuristics about ideals, if
the number field K is in Cn0,d0,α, there exists an L|∆K|(a, c) algorithm for class group and unit
group computation for some c > 0 and a such that 1− a ≥ α ≥ 1− 2a, a ≥ 1

3 and a ≥ α.

When a number field K is in Cn0,d0,α, it is defined by a polynomial T verifying (3.1) so that:

logH(T) =
d0n0(1 + o(1))

n
log |∆K| i.e. H(T) = |∆K|

κ
n (3.2)

where κ = n0d0(1 + o(1)) tends to a constant.

We know from Proposition 2.1 that the height of T satisfies H(T) ≥ n
n
n−1 |∆K|

1
2(n−1) . This

means that the best – i.e. the smallest – we can hope for is κ = 1
2 + o(1). Furthermore, for

randomly chosen polynomial we expect to be close to this best case.
However, as far as we know, the best theoretical bound on the minimal height of smallest

defining polynomials of an arbitrary number field is far from being that good. Indeed, it is
known that:

Theorem 3.2. Let K be a number field of degree n. There exists θ ∈ OK \ Z whose minimal
polynomial Pθ satisfies

H(Pθ) ≤ 3n
(
|∆K|
n

) n
2n−2

.

†The results of [2] are slightly more general than what we state, since they consider the computation of class
groups for all orders in K. For simplicity, we only look at the maximal order OK.

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 5 of 18

Proof. The proof is provided in Appendix A.

In particular, this result allows us to conclude in the case of primitive number fields, i.e.
number fields that do not contain non-trivial subfields. In this case, every element of OK \ Z
corresponds to a generator of K whose minimal polynomial defines K.

Corollary 3.3. In primitive number fields, there exists a defining polynomial T whose
height satisfies

H(T) ≤ 3n
(
|∆K|
n

) n
2n−2

.

Note that this bound is much worse than we would like for our application. Indeed the bound
on the height is only about the square root of the discriminant while we would like something
of the order of the n-th root of the discriminant. Alternatively, we see that it corresponds to a
value κ ≈ n

2 , much larger than the best case κ ≈ 1
2 .

For our purpose, it is difficult to directly work with the classes Cn0,d0,α. Instead, we introduce
a more convenient and more general variation. More precisely, we first introduce slightly
modified classes C′n0,d0,α

satisfying:

n = n0

(
log |∆K|

log log |∆K|

)α
(1 + o(1)) and

d = logH(T) = d0(log |∆K|)1−α(log log |∆K|)α (1 + o(1)) .

Introducing powers of log log |∆K| in this way is more consistent with what is usually done for
discrete logarithms computations using index calculus and simplifies the asymptotic analysis
of index calculus algorithms. All the theorems of [2] can be readily adapted to account for this
change.

This modification being done, we now generalize the definition to include more number fields.
Let n0 > 1 be a real parameter arbitrarily close to 1, d0 > 0, α ∈ [0, 1] and γ ∈ [0, 1] such that
α+ γ ≥ 1, we define Dn0,d0,α,γ as the set of all number fields K of discriminant ∆K that admit
a monic defining polynomial T ∈ Z[X] of degree n that satisfies:

1

n0

(
log |∆K|

log log |∆K|

)α
≤ n ≤ n0

(
log |∆K|

log log |∆K|

)α
and (3.3)

d = logH(T) ≤ d0(log |∆K|)γ(log log |∆K|)1−γ .

In addition to the modification between C and C′, there are two essential differences between
our classes D and the previous classes. First, we have two different exponents α and γ
for log |∆K| in n and d, rather than using γ = 1− α. Second, instead of having a (1 + o(1))
we introduce inequalities in order to be more precise. We also have the useful property that
Dn0,d0,α,γ ⊂ Dn′0,d′0,α,γ′ whenever n0 ≤ n′0, d0 ≤ d′0 and γ ≤ γ′.

Thanks to Corollary 3.3, we need only consider classes Dn0,d0,α,γ , with γ at most 1. Moreover,
the defining polynomials that appear in [2] essentially correspond to the lower end of the
classes D where α+ γ = 1. Indeed, considering the modified classes C′, we see that every K
in C′n0,d0,α

also belongs to Dn0,d0,α,1−α. Thus, our broader definition of the classes include more
number fields, not only those whose minimal defining polynomials satisfy α+ γ = 1.

Note that, in the context of class group computations, algorithms with complexity higher
than L|∆K|(

1
2) are not of great interest. As a consequence, since the algorithm we propose is

exponential in n, we can restrict ourselves to considering classes with α ≤ 1
2 ≤ γ.

Page 6 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

4. The algorithm of Cohen and Diaz y Diaz for polynomial reduction

To the best of our knowledge, the only previous algorithm for reducing defining polynomials
is a folklore algorithm, mentioned in particular by Cohen and Diaz y Diaz in [5] and in [14,
Chapter V]. In the sequel, we call it the algorithm of Cohen and Diaz y Diaz.

They define the size of a monic degree-n polynomial T =
∏

(X − τj) as

S(T) =

n∑
j=1

|τj |2

and it is the quantity they choose to minimize. Since for all k ∈ {0, . . . , n},

|tn−k| ≤
(
n

k

)(
S(T)

n

) k
2

,

the size of T is related to the size of max(|tn−k|2/k) and hence to the height of the polynomial.
Yet this relation is both more complicated and weaker than the inequalities given by (2.2)
and (2.3).

The main reason for their choice is that the size is not too hard to minimize. Indeed,
computing a polynomial with the smallest size is equivalent to finding T such that the vector
formed of its roots has the smallest L2-norm. Remembering that this vector belongs to the
lattice formed of the embeddings of OK in Cn, this can be done using a lattice reduction
algorithm. In particular, the LLL algorithm is a good option since it finds a basis of short
vectors. However, while it solves the problem for small values of n, when the dimension grows,
it is not guaranteed to find the shortest vector. If needed, it is possible to use stronger lattice
reduction algorithms such as BKZ whose complexity is exponential in n but remains polynomial
in the size of the entries.

Thus, the first step of their method is to compute an integral basis ω1, . . . , ωn of OK, so that
every integer θ ∈ OK can be expressed as

θ =

n∑
i=1

xiωi,

where the xi are in Z. Assuming that θ generates K, then its minimal polynomial coincides
with its characteristic polynomial

Tθ =
n∏
j=1

(
X −

n∑
i=1

xiσj(ωi)

)
.

This turns the correspondence between algebraic integers of degree n and monic polynomials
defining the field K into a correspondence between polynomials and vectors in the lattice of
embeddings of OK in Cn. This lattice is generated by the n vectors:

Ωi = [σ1(ωi), . . . , σn(ωi)] . (4.1)

When the field K is imprimitive, care should be taken to avoid polynomials that generate
a strict subfield† of K. For an integer θ, the size of its polynomial Tθ is given by a positive
definite quadratic form in the xi:

S(Tθ) =

n∑
j=1

∣∣∣∣∣
n∑
i=1

xiσj(ωi)

∣∣∣∣∣
2

=
∑
i,j

(
n∑
k=1

σk(ωi)σk(ωj)

)
xixj .

†This issue is taken care of in practice in PARI/GP by restricting the enumeration in order to avoid elements
that only generate subfields. In theory, since they can be an extremely large number of short bad elements,
bounding the resulting complexity is difficult.

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 7 of 18

Equivalently, one can remark that the coefficients
∑n
k=1 σk(ωi)σk(ωj) are the entries of the

Gram matrix of the above lattice. Since lattice reduction, including the LLL algorithm, only
requires this Gram matrix as input, one can find a basis of short vectors in Zn corresponding
to small values of S(Tθ). Finally, the algorithm of Cohen and Diaz y Diaz selects the best value
of θ it can find, breaking ties in any arbitrary manner when several values are equally good.

From an implementation perspective, the lattice generated by vectors Ωi (and/or the Gram
matrix of the lattice) cannot be represented exactly. Instead, it is explained in [6] that, in
general, it should replaced by an approximation with sufficiently high precision. In fact, there
is an interesting special case that occurs when K is totally real. In that case, the Gram matrix
is integral and the lattice reduction can thus be performed on the exact lattice, represented by
its Gram matrix. For the general case, an analysis of the necessary precision is given in [1].

To summarize, the existing algorithm reduces the above lattice in order to find primitive
integer of K with smallest size. However, as already noticed by Cohen in [6, Remark Algo-
rithm 4.4.12], having the smallest size does not necessarily imply having the smallest
height.

Example 1. To illustrate this fact, here are a few examples of polynomials where the
application of the algorithm of Cohen and Diaz y Diaz does not return a smallest-height
polynomial:

Minimal-height polynomials Cohen/Diaz y Diaz output polynomials
x3 + 6381x2 + 4378x− 1216 x3 − x2 − 3537064x+ 2193757452
x3 − 9681x2 − 5434x− 6901 x3 − 31246021x− 67226458585
x3 − 6665x2 − 4318x− 2977 x3 + 336681x− 419200237
x3 − 6018x2 − 1387x+ 6161 x3 − 12073495x− 16147208593

Our implementation (see Section 7) certifies that the four polynomials appearing in the table
have minimal heights.

5. An optimal algorithm for NF defining polynomial reduction

We know from Section 3 that existing bounds do not guarantee, for an arbitrary number
field, the existence of a defining polynomial with coefficients small enough to allow application
of Theorem 3.1. In the present section, we thus aim at the next best thing: given an arbitrary
defining polynomial for a number field, try to find a monic polynomial of smallest height that
defines the same number field.

Throughout this section, we assume that we are given as input a monic† irreducible
polynomial Tin and a factorization of the discriminant ∆(Tin) into prime factors. This allows
us to precompute the discriminant ∆K of the number field K defined by Tin and an integral
basis ω1, . . . , ωn of OK using for instance Round 2 algorithm [6, Algorithm 6.1.8].

With the motivations of Section 3 in mind, we now wish to find a monic polynomial of
smallest height that defines K. Since such a polynomial clearly exists, let TF denote a minimal
polynomial‡. Let θF be a root of TF ; since TF is monic, θF belongs to OK. Thus, we can write
TF (X) =

∏
(X − σj(θF)) . As in the algorithm of Cohen and Diaz y Diaz, we remark that the

†If the number field is initially described by a non-monic polynomial, it is possible using a linear change of
variables to make it monic. The transformation can increase the height by a large factor, but it is mostly
irrelevant for our purpose.
‡Uniqueness of TF is not guaranteed. Indeed, TF (−X) also defines K and there might be others. However, any

of these polynomials achieves our goal and more importantly, the minimal height H(TF) is well-defined.

Page 8 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

vector corresponding to θF in the lattice associated to OK should be small in a certain sense,
since the coefficients of TF , i.e. the symmetric polynomials in the coordinates of the vector are
small. However, we need to replace the notion of smallness by something more adapted than
the L2-norm of the vector.

This is precisely the idea behind our algorithm, consider all small enough vectors in the
lattice until we find one that defines a minimal polynomial and can prove that this polynomial
is indeed of minimal height. In order to do that, let first focus on the target solution TF and
the corresponding vector v(θF) = [σ1(θF), . . . , σn(θF)] . Remark that if all entries of TF have
roughly the same size, then its L2-norm is also small. In that case, the algorithm of Cohen
and Diaz y Diaz succeeds in finding TF . However, when the sizes of the entries are unbalanced,
success is no longer guaranteed. For a more precise analysis, let us introduce a parameter c > 1
whose value is determined later to minimize algorithmic complexity†. Now, consider the vector
[logc |σ1(θF)|, . . . , logc |σn(θF)|] that describes the relative sizes of the coordinates of v(θF).
Then, round each value up to the smallest possible non negative integer, this gives a vector
bF = [bF1 , . . . , b

F
n]. Since TF is monic, by definition, the Mahler measure M(TF) is the product

of the values max(1, |σi(θF)|) and we can write the following inequality between M(TF) and
the vector bF :

c
∑
bFj −n ≤M(TF) ≤ c

∑
bFj .

In particular, this guarantees that:
n∑
j=1

bFj ≤ logcM(TF) + n ≤ logcH(TF) +
1

2
logc(n+ 1) + n, (5.1)

thanks to Equation (2.3).
Given the vector of weights bF , we can introduce a weighted copy of the lattice corresponding

to OK in Cn. The weighted lattice is generated by the vectors:

Ω̃i =

[
σ1(ωi)

cb
F
1

, . . . ,
σn(ωi)

cb
F
n

]
.

In this new lattice, θF is associated to the vector:

ṽ(θF) =

[
σ1(θF)

cb
F
1

, . . . ,
σn(θF)

cb
F
n

]
.

Note that each coordinate of ṽ(θF) has norm at most 1 so that its L2-norm is bounded by
√
n.

As in Section 4, we could work with the Gram matrix of the lattice. However, as an
alternative, we prefer to replace the lattice in Cn by a related lattice‡ in Rn. We assume that
the complex embeddings are ordered with r1 real embeddings first and r2 pairs of conjugate
complex embeddings after that. More precisely, σi is a real embedding for 1 ≤ i ≤ r1 and the
complex embeddings are related by σr1+i = σr1+i+r2 for 1 ≤ i ≤ r2. Using a classical idea of
replacing pairs of complex numbers by their real and imaginary parts, we obtain a lattice of Rn
generated by n real vectors:

ΩR
i =[σ1(ωi),...,σr1 (ωi),

√
2 Re(σr1+1(ωi)),

√
2 Im(σr1+1(ωi)),...,

√
2 Im(σr1+r2

(ωi))].

We also remark that, thanks to the factor
√

2, the L2-norm of each real vector is identical
to the L2-norm of the corresponding complex vector. Indeed, the real and imaginary parts are
common to the two conjugates embeddings and it is necessary to count their squares twice in
the L2-norm.

†It is done in Appendix C and it turns out that the optimal choice is c = exp(1).
‡A third option would be to work directly with the complex lattice as explained in [7].

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 9 of 18

We can also do the same thing for the weighted lattice. First, remark that since
σr1+i = σr1+i+r2 , we necessarily have bFr1+i = bFr1+i+r2

. As a consequence, only the first
r = r1 + r2 coefficients of the weight vector b are needed to describe the weighted lattice,
which is generated by:

Ω̃R
i =

[
σ1(ωi)

cb
F
1
, . . . ,

σr1 (ωi)

c
bFr1

,
√

2 Re(σr1+1(ωi))

c
bF
r1+1

,
√

2 Im(σr1+1(ωi))

c
bF
r1+1

, . . . ,
√

2 Im(σr1+r2
(ωi))

c
bF
r1+r2

]
.

In Ω̃i, the vector corresponding to the integer θF has all its entries of individual norm at
most 1. Thus its L2-norm is bounded by

√
n. Due to the equality of the L2-norm, this bound

also holds in the lattice generated by the Ω̃R
i .

As a consequence, our algorithm simply aims at enumerating all the possible weighted lattices
and all vectors of L2-norm at most

√
n in these lattices. However, doing that directly would be

sub-optimal, because for any integer θ in OK, we would also consider many shifted copy θ + j
with j ∈ Z. To avoid that, we work instead with a lattice projected orthogonally with respect

to the vector Ω̃R
1 to find a candidate θ. Then, finding the best θ + j has a polynomial runtime

in n. The resulting algorithm can be described as follows:

Algorithm 1. Search for a minimal-height defining polynomial.
Input: Integral basis ω1, . . . , ωn of OK and a priori bound BF on logcH(TF).

(i) Fix k = 0, let Bound = BF + 1
2 logc(n+ 1) + n

(ii) For all (b1, . . . , bn) ∈ Nn such that br1+i = br1+r2+i and
∑n
j=1 bj = k:

(a) Construct the weighted lattice generated by the vectors:

Ω̃R
i =

[
σ1(ωi)
cb1

, . . . ,
σr1 (ωi)

cbr1
,
√

2 Re(σr1+1(ωi))
c
br1+1

, . . . ,
√

2 Im(σr1+r2 (ωi))
c
br1+r2

]
.

Since the lattice has real entries, algorithmically we replace it by a sufficiently
precise fixed point approximation and scale it up to an integer lattice.

(b) Project the vectors Ω̃R
i for i ∈ {2, . . . , n} orthogonally with respect to Ω̃R

1 .
(c) Enumerate all vectors of L2-norm at most† 1.1

√
n in this projected lattice and for

each short vector v⊥:
(1) Lift v⊥ to the shortest possible vector v in the full lattice. (This can be done

efficiently by using Gauss’ algorithm on the two-dimensional lattice spanned

by Ω̃R
1 and an arbitrary lift of v⊥.)

(2) Reconstruct the corresponding polynomial

Tv(X) =

r1∏
j=1

(X − vj) ·
r2∏
j=1

((X − vr1+2j−1 − i vr1+2j) · (X − vr1+2j−1 + i vr1+2j)) .

(3) If Tv is irreducible:
– Find the integer j that minimizes the height of Tv(X + j)
– Store Tv(X + j) if it has the smallest height encountered until this point.
– When memorizing Tv(X + j),

update Bound to blogcH(Tv(X + j)) + 1
2 logc(n+ 1)c+ n

(iii) Increment k. If k ≤ Bound, goto (ii) else stop.

Output: The stored polynomial, whose height is minimal among all the defining polynomials.

†With an exact representation of the lattice, it would suffice to enumerate vectors of norm at most
√
n. The

1.1 factor comes from the fact that we are dealing with an approximation of the lattice. See the paragraph on
precision.

Page 10 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

If the a priori bound BF is correct, we know that TF belongs to one of the weighted lattice
we have encountered. Thus, the last memorized polynomial is – one of the possible – TF .

Otherwise, if the input bound does not hold, the algorithm asserts this fact.

Finding j. In the algorithm, we need to find the integer j that minimizes the height
of Tv(X + j). This can be done in polynomial time. Indeed, each coefficient of Tv(X + j)
(viewed as a polynomial inX) is a polynomial in j. We thus want to minimize (over the integers)
the maximum of the absolute values of n polynomials†. This can restated as minimizing the
maximum of 2n polynomials: the coefficients and their opposites. This function is a continuous
positive piecewise-polynomial real function. The transition from one piece to next necessarily
occurs at a root of a difference of two of the 2n polynomials. Thus, there are at most O(n3)
pieces. In each piece, it is easy to minimize over the reals and then over the integers by
considering the two integers‡ closest to this real minimum. As a consequence, the best value
for j can be found in polynomial time.

Precision. At the beginning of the algorithm, the lattice generated by the vectors Ω̃R is
replaced by a “sufficiently” precise fixed point approximation and then scaled up to an integer
lattice. In order to make the description of the algorithm complete, we need to specify the
corresponding precision. The key point is that the precision should be high enough to ensure
that any short vector of the exact lattice corresponds to a short vector of the approximate
lattice. Indeed, we are essentially enumerating all vectors of length bounded by

√
n and we

want to make sure that none of those can be overlooked. Let v be a vector of norm at most
√
n

of the exact lattice, we can write:

v =

n∑
i=1

νi Ω̃R
i with integer coeffients νi.

In order to make sure that the vector of the approximate lattice is also short, i.e. shorter
than 1.1

√
n, the precision should be good enough for the sum of products of the coefficients νi

by the approximation error to be smaller than a constant. In particular, it is enough to require
that the maximum of the νi times the approximation error is smaller than 1

10n .
As a consequence, in order to bound the necessary precision, it suffices to upper bound the

coefficients νi. A classical technique to obtain such a bound is to start from a lower bound
on the orthogonalized vectors of the initial basis and remark that the coefficients νi are upper
bounded in absolute value by

√
n times the inverse of this bound. To obtain a lower bound

on a given ‖b∗i ‖, we can divide the determinant of the lattice by the norms of all the vectors
but the corresponding bi. The determinant of the scaled lattice of iteration k of the algorithm
is
√

∆K c
−k. Thanks to Lemma 1.1 of [14, Chapter V], we know that in the basis of the ring

of integers of K computed from the input polynomial T , ωi is a polynomial of degree i− 1 in
the roots of T . Moreover, the coefficients of this polynomial are in the interval [−1, 1]. As a
consequence, the norm of bi – the lattice element corresponding to ωi – can be upper bounded
by i
√
nZ where Z denotes the largest complex modulus among the roots of T . In particular,

Z ≤M(T).
Putting all this together, we can upper bound the coefficients νi at iteration k by:

ckM(T)n
2

n1.5n

∆K
.

†Since Tv(X + j) is monic, we do not need to include the coefficient in front of Xn in the minimization.
‡Ignoring the integer values lying outside of the current piece.

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 11 of 18

Thus, it suffices to work with a precision k log2(c) + n2 log2M(T) + 1.5n log2(n) + log2(10n),
which is polynomial in the size of the input polynomial. This precision is also sufficient for
performing the reconstruction of Tv from the complex embeddings, rounding each coefficient
to the nearest integer (see [1, Section 3.2] for more details).

Pseudo-canonical polynomial. For some applications, such as the construction of tables
of number fields, it is useful to have a canonical polynomial that represents a given number
field. In that case, it is not difficult to add in the above algorithm an arbitrary criteria such
as lexicographic order on the coefficients to single out one of the possible minimal-height
polynomials. Indeed, all of them are encountered during the enumeration.

6. Complexity analysis

Now we have described our algorithm, in order to understand its algorithmic complexity, we
need to count the involved lattices and to study the cost of short vector enumeration in each of
those lattices. We restrict ourselves to primitive number fields for this analysis. For imprimitive
fields, the algorithm still works but its complexity may be much higher due the possibility of
encountering an extremely large number of integral elements that generate subfields when doing
the short vector enumerations. We leave as an open problem the adaptation of the techniques
used in PARI/GP for the algorithm of Cohen and Diaz y Diaz with imprimitive fields to our
method. In the complexity analysis, we ignore† the cost of computing an integral basis for
the maximal order of the field K. Recall that according to [6, Section 6.1], the complexity
of this step is dominated by the factorization of the discriminant of the input polynomial.

Thanks to the NFS factoring algorithm, this can be done in heuristic time L∆(Tin)

(
1
3 ,

3

√
64
9

)
and depending on Tin, it may be the most costly part of the complete computation.

6.1. Number of lattices

When the input bound BF is incorrect, the number of lattices that are explored is a function
on BF . When BF is correct, thanks to the updating of the bound when a new polynomial is
found, the number of lattices depends on the highest value of k that is reached and this value is
at most logcH(TF) + 1

2 logc(n+ 1) + n according to Equation (5.1). Thus, the exact running
time depends on the quality of the output: it is faster to find polynomials with a smaller height.

Let us consider each iteration of the outer loop: for the iteration numbered k, the number
of lattices is simply the number of vectors (b1, . . . , bn) ∈ Nn that satisfy the two constraints
br1+i = br1+r2+i and

∑n
j=1 bj = k. To obtain an upper bound, we can forget the first constraint‡

and just count the number of vectors such that
∑n
j=1 bj = k. It is a classical combinatorial result

that this number is
(
k+n−1
n−1

)
. Hence, the total number of lattices considered by the algorithm

is:
kF∑
k=0

(
k + n− 1

n− 1

)
=

(
kF + n

n

)
≤ (kF + n)n

n!
, (6.1)

where kF is the value of k in the last iteration, i.e.

kF = bmin
(
BF , logcH(TF)

)
+

1

2
logc(n+ 1)c+ n.

†The reason for ignoring this step is that it is already required for the class group computation itself.
‡Note that, for totally real fields the first constraint is always trivially satisfied. Thus, the bound is tight.

Page 12 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

Bound on kF and classes Dn0,d0,α,γ . Given as input a number field known to be in a
class Dn0,d0,α,γ , we can simply set the value of BF given to the algorithm to be:

BF =

⌊
d0

log c
(log |∆K|)γ(log log |∆K|)1−γ

⌋
.

Moreover, since we are limiting ourselves to the cases α ≤ 1
2 ≤ γ, n (and logc(n+ 1)) is

negligible compared to BF and thus kF + n = (1 + o(1))BF .

We conclude that the number of lattices in the enumeration is upper bounded by ((1+o(1))BF)n

n!
and thus by L|∆K|(α, γ n0 − α

n0
).

6.2. Cost of each enumeration

The second analysis treats of the enumeration phase for each weighted lattice. We recall that
we are interested in all vectors whose euclidean norm is below

√
n. A slight modification from

the Kannan’s SVP algorithm brings us the enumeration process and all its analysis is detailed
in [9]. Note that this cost of enumeration includes the HKZ reduction of the basis.

Proposition 6.1. Enumerating all vectors of norm below
√
n in one of our weighted lattice

can be done in at most Poly (log |∆K|) · n
n
2e+o(n) binary operations.

Proof. The proof is a consequence of [9] and is provided in Appendix B. Note that the no(n)

in particular hides a cn term which is considered in Appendix C when optimizing c.

We remark that n
n
2e+o(n) = L|∆K|(α,

αn0

2e). Multiplying by the number of lattices, we find
that the final complexity can be expressed as

L|∆K|

(
α, γ n0 −

α

n0
+
αn0

2e

)
,

which becomes arbitrarily close to L|∆K|(α, γ − 2e−1
2e α) when n0 is taken close to 1.

7. Application to class group computation

Let us get back to class group computation. We recall that Biasse and Fieker find a way
to bring down the complexity of their algorithm for certain classes of – orders in – number
fields. Given a number field K ∈ Cn0,d0,α – defined by a polynomial T satisfying (3.1) – they
are able to compute the class group and a compact representation of a fundamental system of
units of this order in time L|∆K|(a, c) for 1

3 ≤ a <
1
2 depending on the parameters of the class

and c > 0.
We now want to investigate the theoretical impact of using a minimal-height defining

polynomial for class group computations. Note that the existence of such a polynomial ensures
that K lies in a certain class Dn0,d0,α,γ with γ ∈ [1− α, 1]. If γ reaches the lower bound
γ = 1− α, then K ∈ Dn0,d0,α,1−α and we can apply the conditional improvement† of [2]
to this field. Our idea is then to add our algorithm as a precalculation to theirs in order to find
the parameters required to fit K in such a class, if possible.

Doing this enables to extend the applicability of the algorithm of Biasse and Fieker to every
number field in a class Dn0,d0,α,1−α, even if the number field is not initially given by a small-
height defining polynomial. It remains to check that the cost of this precalculation does not

†More precisely the adaptation of this improvement to the classes C′.

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 13 of 18

outweigh the global complexity of the rest of the class group computation. We know from
Section 6 that our algorithm runs in time L|∆K|

(
α,O(1)

)
in that case. This never dominates

the cost of their class group algorithm, thus we can state that:

Theorem 7.1 ([2, Theorem 6.2]). Under GRH and smoothness heuristics about ideals, for
every number field K ∈ Dn0,d0,α,1−α, there exists an L∆K(a, c) algorithm for class group and
unit group computation for some c > 0 and a satisfying a ≥ max

(
α, 1−α

2

)
.

Furthermore, our new classes D built from four parameters allow us to generalize the work
of Biasse and Fieker to all number fields having α ≤ 1

2 ≤ γ:

Theorem 7.2. Under GRH and smoothness heuristics about ideals, for every number field
K ∈ Dn0,d0,α,γ , there exists an L∆K(a, c) algorithm for class group and unit group computation
for some c > 0 and a = max

(
α, γ2

)
.

Proof. This is only a generalization of the work of Biasse and Fieker. Their final result
mainly depends on [2, Theorem 3.1]. In fact we need to adapt the bounding of norms in the
proof of this theorem to our more general classes. More precisely, we find that:

For all number fields K in Dn0,d0,α,γ , we can find a B-smooth ideal equivalent to
a |∆K|-ideal a ⊆ OK with a decomposition in degree 1 prime ideals in time L∆K|(b, µ) for
some µ ≥ 0 where B = L∆K|(a, ρ) for some ρ ≥ 0 provided that a and b satisfy:

(i) b ≤ γ ≤ a+ b; (ii) α+ γ ≤ a+ 2b; (iii) α+ γ ≤ 2a+ b; (iv) α ≤ b.

The proof is the same except that we modify the exponent appearing in the definition of k.
The value 1− β − τ

2 in their proof becomes α+ γ − β − τ
2 .

We thus conclude from this theoretical analysis that our algorithm for reducing number field
defining polynomial widens the set of number fields whose class group and unit group can be
computed with runtime L|∆K|(a,O(1)), 1

3 ≤ a <
1
2 . The experimental results below illustrate

that it also offers a good behavior on practical examples.

7.1. Experimental results

We implemented a prototype of our algorithm under Magma 2.21-6. The precision and the
parameter c are fixed by the user. This slightly differs from the description of Section 5 since
our code enumerate all the elements of norm below

√
n in each weighted lattice, instead of

doing the minimization of the height of Tv(X + j). Indeed, with the practical examples we
considered, it is faster to proceed in that way. Furthermore, when a polynomial T (better than
the input polynomial) is found, our code offers two options. The first is to stop immediately,
since it appears that in practice the first polynomial to be found usually has minimal-height.
Despite the fact that this early abort does not certify the minimality, it is a good practical
option for class group computations. Another approach when a first polynomial is found is
to directly increment k to the value blogH(T) + 1

2 logc(n+ 1)c+ n. This skips intermediate
computations which are often useless and directly goes to checking that the polynomial T has
minimal height.

In our implementation, we do not fix the parameter c to exp(1) as in the asymptotic analysis.
Instead, we remark that using a large c allows for smaller values of k and makes the code run

Page 14 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

faster for finding a first candidate polynomial with small height. However, to find a minimal-
height polynomial, smaller values of c are better. This can be seen on the examples given in
Table 1.

Example 2. As a first benchmark, we consider the polynomial t12 + 4t11 − 17t10 −
68t9 + 108t8 + 416t7 − 314t6 − 1129t5 + 358t4 + 1353t3 − 36t2 − 540t− 72 given as an exam-
ple in [14, Section V.3]. This polynomial is obtained by using the algorithm of Cohen and Diaz
y Diaz to a polynomial with huge coefficients; it defines a suborder of index 670150656 of the
ring of integers. More precisely, the vector corresponding to the above polynomial appears as
the second vector in the reduced basis after LLL reduction. The fourth vector of the same basis
yields a better polynomial with smaller height (505) and smaller index (439826112).

With our algorithm , we find an even better polynomial:

t12 − 14 t11 + 25 t10 + 62 t9 − 155 t8 − 50 t7 + 263 t6 − 50 t5 − 155 t4 + 62 t3 + 25 t2 − 14 t+ 1,

whose associated order has index 419904 – and whose height is 263. In addition, this polynomial
is palindromic and, thus, reveals an underlying symmetry of the corresponding number field
which was not apparent from the other defining polynomials.

Example 3. To illustrate practically what changes in class group computation, we choose
an example having smaller degree and larger coefficients:

x5 − 5843635x4 + 931633x2 + 6577x− 8570.

Our implementation of the reduction algorithm certifies that this polynomial has minimal
height.

If we give it to Magma V2.21-6 in order to compute the class group of the associated number
field, it first “reduces” the polynomial as

x5 − 2x4 − 8001397580x3 − 31542753393650x2 + 3636653302451131875x + 4818547529425280067500

and then finds the class group – assuming GRH – in about 285 seconds, on the laptop we used
for all experiments. More precisely, according to the output of its verbose mode, it seems that
Magma derives the relations by sieving on different polynomials. Those polynomials appear
to be chosen as the minimal polynomials of algebraic integers of the form θ+b

c , where θ is
the second element of the LLL-reduced integral basis of OK. We reconstructed the “reduced”
polynomial from this information. Magma uses 2306 different sieving polynomials: 663 lead to
0 relations, 748 to 1 relation, 498 to 2 relations and 397 to at least 3 relations. None of them
produce more than 8 relations.

In Magma V2.19-10, class group computation is not as optimized as in V2.21, but there is no
reducing algorithm: Magma directly works with the input polynomial. Thus, we can compare
the efficiency of using either of the two polynomials:

– with x5 − 5843635x4 + 931633x2 + 6577x− 8570, it takes about 140 seconds,
– with the “reduced” one, it takes about 3240 seconds.

We see that using the old version with a minimal-height polynomial even makes faster than
the new version, despite the huge optimization of the class group computation code. For a
more detailed comparison, using the best polynomial as input, the old version only sieves on
58 different sieving polynomials and the first already leads to 784 relations.

Note that our implementation in Magma finds this minimal-height polynomial from the
“reduced” one in less than 1.5 second. It also certifies that it is indeed of minimum height.
Thus, in this practical case, the reduction algorithm takes negligible time and using it as a
precomputation can greatly speed up the class group computation.

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 15 of 18

Example 4. Finally, we run our implementation on sets of number fields stored in the
online Class Group Database [4]. For each degree n ∈ {3, 4, 5, 7}, we pick 100 number fields
having discriminant about b bits and we try to reduce the polynomial T0 given in the table.
For each degree, we consider two different sizes of discriminants in order to observe how the
algorithm behaves as the discriminant grows.

To illustrate the improvement compare to the previously tabulated polynomial, we compute
the ratio r = logH(TF)

logH(T0) , TF denoting the output polynomial.

Table 1. Gain in the size of the height after reduction, r = logH(TF)
logH(T0)

n log2 |∆K|
Early abort Proven minimal height

c avg. r min r max r avg. time c avg. r min r max r avg. time

3
20 10 0.652 0.435 0.860 7 ms 2 0.651 0.435 0.860 49 ms
40 10 0.635 0.381 0.741 17 ms 3 0.634 0.381 0.736 131 ms

4
25 10 0.607 0.393 0.868 18 ms 2 0.604 0.393 0.868 1.0 s
40 10 0.547 0.446 0.806 108 ms 3 0.544 0.446 0.806 6.6 s

5
50 10 0.724 0.567 0.955 109 ms 3 0.715 0.567 0.955 4.8 s
80 10 0.698 0.555 0.852 820 ms 4 0.695 0.555 0.852 14.7 s

7
80 20 0.712 0.519 0.970 1.7 s 4 0.701 0.519 0.970 749 s
100 20 0.700 0.537 0.843 6.3 s − − − − −

Appendix A. Proof of Theorem 3.2

Theorem. Let K be a number field of degree n. There exists θ ∈ OK \ Z whose minimal
polynomial Pθ satisfies

H(Pθ) ≤ 3n
(
|∆K|
n

) n
2n−2

.

Proof. Given the integral basis ω1, . . . , ωn of OK produced by the Round 2 algorithm [6,
Algorithm 6.1.8], we consider the lattice L generated by (Ω1, . . . ,Ωn), where Ωi denotes the
vector [σ1(ωi), . . . , σn(ωi)]. We know that Ω1 is the all ones vector and that ‖Ω1‖ =

√
n. In

other words, Ω1 corresponds to the integer 1 in the number field K and it generates the trivial
subfield Q. Thus, elements of OK \ Z are in a one-to-one correspondence with lattice vectors
not on the line through 0 and Ω1 – i.e. with vectors that involve at least one of Ω2, . . . ,Ωn
with a non-zero coefficient.

We now consider the lattice L⊥ spanned by the vectors Ω⊥i = Ωi − kiΩ1, where ki = <Ω1,Ωi>
n

so that <Ω1,Ω
⊥
i >= 0. Hence, L⊥ is the orthogonal projection of L with respect to Ω1, and

its determinant† satisfies

detL = ‖Ω1‖ detL⊥.

In this new lattice L⊥, of dimension n− 1, Minkowski’s theorem implies the existence of an
element θ⊥ of small uniform norm, namely

∃θ⊥ ∈ L⊥ s.t. ‖θ⊥‖∞ ≤
(
detL⊥

) 1
n−1 .

†We recall that the determinant of a lattice L is the absolute value of the determinant of any matrix that
defines L and this value is the same for any basis.

Page 16 of 18 ALEXANDRE GÉLIN AND ANTOINE JOUX

Let us denote this vector by

θ⊥ =

n∑
i=2

tiΩ
⊥
i =

n∑
i=2

tiΩi +

n∑
i=2

tikiΩ1,

with ti ∈ Z.
Consider the affine line going through

∑n
i=2 tiΩi and directed by Ω1. On this line, there

exists a lattice vector θ =
∑n
i=1 tiΩi of minimal length. We know that θ − θ⊥ = βΩ1 for a real

number β with |β| ≤ 1
2 . As a consequence, ‖θ − θ⊥‖∞ ≤ 1

2 . This allows us to conclude that

∃θ ∈ L s.t. ‖θ‖∞ ≤
(

detL√
n

) 1
n−1

+
1

2
=

(
|∆K|
n

) 1
2n−2

+
1

2
.

Finally, thanks to the Minkowski’s bound, we know that |∆K| ≥ n so that
(
|∆K|
n

) 1
2n−2 ≥ 1

and
(
|∆K|
n

) 1
2n−2

+ 1
2 ≤

3
2

(
|∆K|
n

) 1
2n−2

. Then we deduce an upper bound for the height of the

minimal polynomial Pθ of θ, using (2.2) and M(T) =
∏

max(1, |τi|) ≤ (maxi |τi|)n:

H(Pθ) ≤ 2n

(
3

2

(
|∆K|
n

) 1
2n−2

)n
= 3n

(
|∆K|
n

) n
2n−2

.

Appendix B. Proof of Proposition 6.1

Proposition. Enumerating all vectors of norm below
√
n in one of our weighted lattice

can be done in at most Poly (log |∆K|) · n
n
2e+o(n) binary operations.

Proof. This is mostly a consequence of the results of [9], which gives a two steps strategy for
enumerating the short vectors of a lattice. The first step is to compute an HKZ-reduced basis
of the lattice and the second to enumerate the short vectors using this HKZ-reduced basis.
Thanks to the high quality of the reduced basis, the enumeration process is greatly speeded
up. Note that this second step dominates the complexity of the process.

The complexity of the enumeration process is analyzed in [9, Section 4.1]. Assume that we
have a dimension d lattice given by a basis (b1, . . . , bd) with Gram-Schmidt orthogonalization
denoted by (b∗1, . . . , b

∗
d) and that we wish to enumerate all vectors of L2-norm at most A. Then

the complexity expressed in number of arithmetic operations is:

2O(d) · max
I⊂[1...d]

 A|I|

√
d
|I|∏

i∈I ‖b∗i ‖

 .

Moreover, [9, Theorem 3] states that for an HKZ-reduced basis, for all subsets I of [1 . . . d],
we have:

‖b1‖|I|∏
i∈I ‖b∗i ‖

≤
√
d
|I|+ d

e .

As a consequence, in terms of arithmetic operations, enumerating all vectors of L2-norm at
most λ‖b1‖ costs at most:

2O(d) ·
√
d
d
e · λd.

Note that the preliminary step of computing an HKZ-reduction of the lattice before doing the
enumeration does not dominate the complexity of the enumeration itself (see [9, Theorem 2]).

NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION Page 17 of 18

In [9], the complexity is then expressed in terms of bit operations for the case of integer
lattices given a bound on the larger integers in the lattice basis. In our case, as already explained
after Algorithm 1, we work with an integer lattice approximation whose entries have size
polynomial in the size of the input polynomial.

Finally, to apply the result in our case, we need to note that whenever we are enumerating
on the lattice corresponding to a weight vector (b1, . . . , bn), we know that the weight vector
(max(b1 − 1, 0), . . . ,max(bn − 1, 0)) did not lead to a successful short vector during the
enumeration. Thus, due to the primitivity of the field, no vector of L2-norm smaller than

√
n

exists in this lattice. As a consequence, there is no non-zero vector of L2-norm smaller
than

√
n/c in the current lattice. Thus, we are performing enumeration with a ratio factor λ

compared to the short vector at most c. We conclude that the cost of enumeration in bit
operations is at most:

Poly (log |∆K|) · 2O(n) · n n
2e · cn ≤ Poly (log |∆K|) · n

n
2e+o(n).

Note that for the first lattice in the enumeration process, i.e. the Cohen and Diaz y Diaz
lattice, it is also directly known that no vectors of L2-norm smaller than

√
n exist in the lattice.

Appendix C. Optimal choice for c

Once the complexity analysis is done, it remains to more precisely study the dependence
on c to minimize the constant term. Assuming that the output polynomial defines a number
field K in Dn0,d0,α,γ such that γ ≥ α – namely the case of application to class groups –, then
the global complexity we found is bounded by(

d0
log c (log |∆K|)γ(log log |∆K|)1−γ(1 + o(1))

)n
n!

· Poly (log |∆K|) · 2O(n) · n n
2e · cn.

As we want to find the best c, we only look at the dependence on c which can be approximated
by: (

1

log c

)n
· cn =

(
c

log c

)n
,

and whose minimum is achieved by fixing c at exp(1).

References

1. K. Belabas, ‘Topics in computational algebraic number theory’, Journal de Théorie des Nombres de
Bordeaux 16 (2004) 19–63.

2. J.-F. Biasse and C. Fieker, ‘Subexponential class group and unit group computation in large degree
number fields’, LMS Journal of Computation and Mathematics 17 (2014) 385–403.

3. J. Buchmann, ‘A subexponential algorithm for the determination of class groups and regulators of algebraic
number fields’, Séminaire de Théorie des Nombres, Paris 1988-1989 (1990) 27–41.

4. ‘Class Group Database’, http://www.mathematik.uni-kl.de/~numberfieldtables/ , maintained by G.
Malle.

5. H. Cohen and F. Diaz Y Diaz, ‘A polynomial reduction algorithm’, Journal de Théorie des Nombres de
Bordeaux 3 (1991) 351–360.

6. H. Cohen, ’A course in computational algebraic number theory’, Graduate Texts in Mathematics 183
(1991).

7. Y. H. Gan, C. Ling and W. H. Mow, ‘Complex lattice reduction algorithm for low-complexity full-
diversity MIMO detection’, IEEE Trans. Signal Processing 57-7 (2009) 2701–2710.

8. J. L. Hafner and K. S. McCurley, ‘A rigorous subexponential algorithm for computation of class groups’,
Journal of American Mathematical Society 2 (1989) 839–850.

9. G. Hanrot and D. Stehlé, ‘Improved analysis of Kannan’s shortest lattice vector algorithm’, CRYPTO
2007 (2007) 170–186.

10. D. H. Lehmer, ‘Factorization of certain cyclotomic functions’, Annals of Mathematics 34 (1933) 461–479.

http://www.mathematik.uni-kl.de/~numberfieldtables/

Page 18 of 18 NF POLYNOMIAL REDUCTION AND CLASS GROUP COMPUTATION

11. K. Mahler, ‘An application of Jensen’s formula to polynomials’, Journal of the London Mathematical
Society 7 (1960) 98–100.

12. K. Mahler, ‘An inequality for the discriminant of a polynomial’, Michigan Mathematical Journal 11 (1964)
257–262.

13. M. Mignotte and P. Glesser, ‘Landau’s inequality via Hadmard’s’, Journal of Symbolic Computation
18 (1994) 379–383.

14. M. E. Pohst, ‘Computational algebraic number theory’, DMV Lecture Notes 21 (1993).
15. D. Shanks, ‘Class number, a theory of factorization, and genera’, Proceedings of Symposia in Pure

Mathematics 20 (1969) 415–440.
16. D. Shanks, ‘The infrastructure of a real quadratic field and its applications’, Proceedings of the 1972

Number Theory Conference (1972) 217–224.

Alexandre Gélin
Sorbonne Universités, UPMC Paris 6,

UMR 7606, LIP6, 75005, Paris
France

alexandre.gelin@lip6.fr

Antoine Joux
Chaire de Cryptologie, Fondation UPMC,
Sorbonne Universités, UPMC Paris 6,

UMR 7606, LIP6, 75005, Paris
France

antoine.joux@m4x.org

	Introduction
	A reminder on number fields and their defining polynomials
	Motivations and link with class group computation
	The algorithm of Cohen and Diaz y Diaz for polynomial reduction
	An optimal algorithm for NF defining polynomial reduction
	Complexity analysis
	Application to class group computation
	Appendix A. Proof of Theorem 3.2
	Appendix B. Proof of Proposition 6.1
	Appendix C. Optimal choice for c
	References

