PRINCIPALLY POLARIZED SQUARES OF ELLIPTIC CURVES
WITH FIELD OF MODULI EQUAL TO Q

ALEXANDRE GELIN, EVERETT W. HOWE, AND CHRISTOPHE RITZENTHALER

ABsTrACT. We give equations for 13 genus-2 curves over Q, with models
over QQ, whose unpolarized Jacobians are isomorphic to the square of an elliptic
curve with complex multiplication by a maximal order. If the Generalized Rie-
mann Hypothesis is true, there are no further examples of such curves. More
generally, we prove under the Generalized Riemann Hypothesis that there ex-
ist exactly 46 genus-2 curves over Q with field of moduli Q whose Jacobians
are isomorphic to the square of an elliptic curve with complex multiplication
by a maximal order.

1. INTRODUCTION

For g > 1, let M, (resp. 2Ay) be the moduli space classifying absolutely irreducible
projective smooth curves of genus g (resp. principally polarized abelian varieties of
dimension g) over Q. These spaces are quasi-projective varieties defined over Q,
linked by the Torelli map, which associates to a curve its Jacobian. To explain the
modular interpretation of rational points on these spaces, we must define the terms
field of definition and field of moduli. If X is a curve or polarized abelian variety
over Q, we say that a field ' C Q is a field of definition of X if there exists a
variety Xo/F — called a model of X over F — such that X ~g X. Since Q is a
field of characteristic 0, by [Koi72, Corollary 3.2.2, p. 54] we can define the field of
moduli of X to be either

e the field fixed by the subgroup {o € Gal(Q/Q) | X ~ X}, or
e the intersection of the fields of definition of X.

With these terms defined, we can say that the rational points on 9, (resp. %)
correspond to the isomorphism classes of curves (resp. principally polarized abelian
varieties) over Q that have field of moduli Q [Bai62].

There are a number of interesting sets of rational points on 2, but the complex
multiplication (CM) abelian varieties — that is, the principally polarized abelian
varieties having endomorphism rings containing an order in a number field of de-
gree 2g over Q — have attracted the most interest. When such a point on 2, lies
in the image of 9M,, the corresponding curve is called a CM-curve. For g = 2,
the set of simple CM-abelian varieties with field of moduli Q is known, and for
those varieties that are Jacobians explicit equations have been computed for the
corresponding curves [Spa94, vWW99, MUO01, KS15, BS17]; for g = 3 the similar set
of possible CM maximal orders is determined in [K116] and conjectural equations
for the curves are given in [Wen01, KW05, BILV16, LS16, KLL"18]. (And while
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we have avoided the case g = 1 in the discussion above for technical reasons, it is
still of course true that the CM-elliptic curves with rational j-invariants are known
as well [Sil94, Appendix A.3].)

In this article we consider genus-2 curves whose Jacobians are non-simple CM-
abelian surfaces. Every such surface is isogenous to the square of a CM-elliptic
curve, but we restrict our attention in two ways: first, we look only at surfaces that
are isomorphic (and not just isogenous) to E? for a CM-elliptic curve E, and second,
we only consider F that have CM by a maximal order. The second restriction is
not essential to our methods, and we impose it here in order to simplify some of
our calculations. Note that if the elliptic curve E has no CM — i.e., End(E) ~ Z
— then E? cannot be isomorphic to the Jacobian of a genus-2 curve, because E?
has no indecomposable principal polarizations [Lan06, Corollary 4.2, p. 159].

Main Contributions. We prove under the Generalized Riemann Hypothesis that
there exist exactly 46 genus-2 curves over Q with field of moduli Q whose Jacobians
are isomorphic to the square of an elliptic curve with CM by a maximal order. We
show that among these 46 curves exactly 13 can be defined over Q, and we give
explicit equations for them. In order to accomplish this, we develop an algorithm
to compute, for an imaginary quadratic maximal order O, canonical forms for all
positive definite unimodular Hermitian forms on O x O. Such Hermitian forms
correspond to principal polarizations ¢ on E?, and our algorithm computes the
automorphism group of the polarized variety (E?, ) and identifies the polarizations
that come from genus-2 curves.

Related work. Hayashida and Nishi [HNG65]| consider in particular when a product
of two elliptic curves, with CM by the same maximal order O, is the Jacobian of
a curve over C, and they find that this happens if and only if the discriminant
of O is different from —1, —3, —7, and —15. Hayashida [Hay68] gives the number
of indecomposable principal polarizations on E? where E/C is an elliptic curve
with CM by a maximal order. More recently, Kani [Kan14, Kanl16] gives existence
results on Jacobians isomorphic to the product of two elliptic curves with control
on the polarization, and Schuster [Sch90] and Lange [Lan06] study generalizations
to higher dimensions. Rodriguez-Villegas [Rod00] considers the same situation
as Hayashida and Nishi, and in the case where O has class number 1 and odd
discriminant, he gives an algorithm (relying on quaternion algebras) for producing
curves with field of moduli Q. Note finally that Fité and Guitart [FG18| determine
when there exists an abelian surface A/Q that is Q-isogenous to E?, with E/Q
a CM-curve.

Outline. Our article proceeds as follows. Torelli’s theorem (see [Lau01, Appendix])
implies that our genus-2 curve C' has field of moduli Q if and only if its principally
polarized Jacobian (E?, ) has field of moduli Q. We therefore need to find all
elliptic curves E with CM by a maximal order © and all polarizations ¢ of E?
such that (E2, ) is isomorphic to all of its Gal(Q/Q)-conjugates. Proposition 2.1
shows that if E? is isomorphic to all of its Galois conjugates — even just as an
abelian variety without polarization — then the class group of O has exponent at
most 2. Under the Generalized Riemann Hypothesis, this gives us an explicit finite
list of possible orders (Table 1). For each of these orders O, one can identify the
indecomposable principal polarizations ¢ on E? and describe them as certain 2-by-2
matrices M with coefficients in O (Proposition 3.1). Tables of such matrices were
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computed by Hoffmann [Hof91] and Schiemann [Sch98] and were published online,"
but they only include a fraction of the discriminants that we must consider. We
therefore describe an algorithm, using a method different from that of Hoffmann and
Schiemann, that we use to recompute these tables of matrices (Section 3.2). Given
such a matrix M, we find explicit algebraic conditions on M for the principally
polarized abelian surface (E?, ) to have field of moduli Q (Section 3.3). We check
whether these conditions are satisfied for each M on our list.

We conclude the article with three more results: we heuristically compute the
Cardona—Quer invariants [CQO5] of the associated curves C' and see that the fac-
torization of their denominators reveals interesting patterns; we show that the field
of moduli is a field of definition if and only if C' has a non-trivial group of automor-
phisms (i.e., of order greater than 2, see Section 4.1); and for the curves C' defined
over Q, we compute equations and prove that they are correct.

Notation. In the following, E is an elliptic curve over Q with complex multiplica-
tion by a maximal order O of discriminant A and with fraction field K, which we
sometimes call the CM-field.

2. CONDITION ON E?

We are interested in the field of moduli M of a principally polarized abelian sur-
face (E?,¢). As outlined above, we first consider the abelian surface E? alone
and we give a necessary condition for M to be contained in the CM-field K.
If M C K then in particular we have E? ~ (E?)? for all 0 € Gal (Q/K). The
class group Cl(O) acts simply transitively on the set of elliptic curves with CM
by O [Sil94, Proposition 1.2, p. 99]. Since End(E?) = End(F) = O, for each
o € Gal(Q/K), there exists a unique class of ideals I, € C1(O) such that E° ~ E/I,.

Using a result of Kani [Kanll, Proposition 65, p. 335], we get that, for E, o
and I, defined as above,

E?~ (B/L,)? < I2=1[0],

where the last equality is in C1(O). Note that since we only work with maximal
orders, the conditions on the conductors in Kani’s result are trivially satisfied.
Moreover by [Sil94, Theorem 4.3, p. 122], since for any I € Cl(O) there exists
o € Gal(Q/K) (actually even in Gal (K (j(E))/K)) such that E/I = E°, we get
the following proposition.

Proposition 2.1. A necessary condition for M C K is that the class group of O
has exponent at most 2.

Louboutin [Lou90] shows that under the assumption of the Generalized Riemann
Hypothesis, the discriminant A of an imaginary quadratic field whose class group is
of exponent at most 2 satisfies |A| < 2-107. In Table 1 we list the 65 fundamental
discriminants satisfying this bound that give class groups of exponent at most 2.

3. POLARIZED ABELIAN SURFACES

3.1. Polarizations on the square of an elliptic curve. We now consider the
principal polarizations on the product surface A = E2. A principal polarization
on A is, in particular, an isogeny of degree 1 from A to the dual A of A, but

L Available at https://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/.
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# Cl(O) Discriminants A
20 -3, —4, =7, =8, —11, —19, —43, —67, —163
2! —15, —20, —24, —35, —40, —51, —52, —88, —91, —115,
—123, —148, —187, —232, —235, —267, —403, —427
22 —84, —120, —132, —168, —195, —228, —280, —312,

—340, —372, —408, —435, —483, —520, —532, —555,
—595, —627, —708, —715, —760, —795, —1012, —1435

23 —420, —660, —840, —1092, —1155, —1320, —1380,
—1428, —1540, —1848, —1995, —3003, —3315
2t —5460

TABLE 1. Discriminants A of the imaginary quadratic maximal
orders O of exponent at most 2, conditional on the Generalized
Riemann Hypothesis.

not every isomorphism A — Aisa principal polarization; other properties must be
satisfied as well (see [BLO04, § 4.1]). One such polarization is the product polarization
wo = ¢p X ¢p. Given any other principal polarization ¢, we can consider the
automorphism M = ¢y 'y of A, which (in light of the isomorphism A = E?) we
view as a matrix? in GLa(Q). Our first result characterizes the matrices that arise
in this way; the statement is not new, but we provide a proof here because it
introduces some of the ideas used in the sequel. (Recall [Hal74, Exercise 7, p. 134]
that two matrices M7 and My in GLo(O) are said to be congruent if there exists a
matrix P € GLy(O) such that P*M; P = Ms, where P* is the conjugate transpose
of P.)

Proposition 3.1. The map M — ¢o - M defines a bijection between the positive
definite unimodular Hermitian matrices with coefficients in O and the principal
polarizations on A. Two principal polarizations are isomorphic to one another if
and only if their associated matrices are congruent to one another.

Proof. By [BL04, Theorem 5.2.4, p. 121], the matrices M corresponding to principal
polarizations are totally positive symmetric endomorphisms of norm 1. Here the
symmetry is with respect to the Rosati involution of End(A) associated to the
polarization g, which is the conjugate-transpose involution under the identification
End(A) = M5(0O). Thus, the matrices M corresponding to principal polarizations
are exactly the positive definite unimodular Hermitian matrices.

Let 1 and @2 be two principal polarizations on A, corresponding to matrices M,
and Ms. The polarizations 1 and @9 are isomorphic to one another if and only if
there exists an automorphism a: A — A such that Gpja = ¢, where &: A — A
is the dual of a. This last condition is equivalent to (pg '@po) (g te1a) = @y twa.
Now, ¢, 18¢o is nothing other than the Rosati involute of a, so if we write a
as a matrix P € GLy(0O), the condition that determines whether ¢; and o are
isomorphic is simply P*M1P = M. ([

The principal polarizations on A come in two essentially different types.

Definition 3.2. A polarization ¢ on an abelian variety A over a field £ is said to
be geometrically decomposable if there exist two abelian varieties Ay and As over k

2All matrices in this paper act on the left.
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of positive dimension, together with polarizations 1 and ¢, such that (A4, ¢) and
(A1 x As, o1 X o) are isomorphic over k. A polarization that is not geometrically
decomposable is geometrically indecomposable. For brevity’s sake, in this paper
we drop the adjective geometrically and simply use the terms decomposable and
indecomposable for these concepts.

Results in [Wei57, Hoy63, OU73] show that a principally polarized abelian surface
is the Jacobian of a curve if and only if the polarization is indecomposable. In the
remainder of this section we show how we can easily compute representatives for the
congruence classes of matrices representing the decomposable polarizations on EZ;
we focus on the indecomposable polarizations in later sections.

Proposition 3.3. If ¢ is a decomposable polarization on E?, then there exist el-
liptic curves F and F' that have CM by O such that ¢ is the pullback to E* of
the product polarization on F x F' via some isomorphism E?> ~ F x F'. The
pair (F, F') giving rise to a given decomposable polarization is unique up to inter-
changing F and F' and up to isomorphism for each elliptic curve. Moreover, for
every F with CM by O there exists an F' with CM by O such that E* ~ F x F'.

Proof. First we note that by definition, if ¢ is a decomposable polarization on E?
there must exist elliptic curves F’ and F”, isogenous to E, such that ¢ is the pullback
of the product polarization on F x F’ under some isomorphism E? ~ F x F’.
Now, the center of End(E?) is End(E) = O, while the center of End(F x F”)
is End(F) N End(F"); since O is a maximal order, F' and F’ both have CM by O.

If (a, 8): G — F x F' is an embedding of an elliptic curve G into F' x F’, then
the pullback of the product polarization to G is the morphism

~

& 8] |o ] [5] =0+ 5 = dexta) + deutsy

that is, the pullback is the multiplication-by-d map, with d = deg(a) + deg(8). It
follows that if ¢ is the pullback to E? of the product polarization on F x F’ via some
isomorphism E? ~ F x F’, then the set of elliptic curves G for which there exists an
embedding ¢: G — E? such that ¢*¢ is a principal polarization is simply {F, F'}.
Thus, for a given decomposable principal polarization, the pair (F, F”) is unique up
to order and isomorphism.

As we noted at the beginning of Section 2, the set of elliptic curves with CM
by O is a principal homogenous space for the class group of O. Given an F with CM
by O, let I € C1(O) be the ideal class that takes E to F. If F’ is an elliptic curve
with CM by O, say corresponding to an ideal class I’ € C1(O), then E? ~ F x F’ if
and only if I’ is the inverse of I (see [Kanll, Proposition 65, p. 335]). This proves
the final statement of the proposition. ([

Corollary 3.4. Let h denote the class number of O, and let t denote the size of
the 2-torsion subgroup of the class group. The number of decomposable polarizations
on E? is equal to (h +1t)/2.

Proof. The proof of Proposition 3.3 shows that the unordered pairs (F, F’) with
E? ~ F x F' correspond to unordered pairs (1, I~1), where I € C1(O). The number
of such pairs is (h +t)/2. O

Let F be an elliptic curve with CM by O and let I be the ideal class that
takes E to I'. Let a be an ideal of O representing I, such that a is not divisible
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by any nontrivial ideal of Z. We may write a = (n,«), where n = Norm(a) € Z
and where o € a is chosen so that the ideal aa™! is coprime to nQ); then there
exist x,y € Z such that xn? — y Norm(a) = n. Let F’ be the elliptic curve such
that E? ~ F x F'. We prove the following corollary in Section 3.3.

Corollary 3.5. In the notation of the paragraph above, the isomorphism class of the
decomposable polarization on E? obtained from pulling back the product polarization
on F' x I’ is represented by the congruence class of the matriz

<n+ Nor:(a) (.’L‘ +y)0[ >

(.’L‘ + y)a xQn + yg Norm(a)

n

3.2. How to find the polarizations? In Section 2, we identified 65 orders O for
which we need to compute the set of indecomposable principal polarizations, or
equivalently, representatives of the congruence classes of indecomposable positive
definite unimodular Hermitian matrices with coefficients in . In this section we
describe how we computed these representatives.

Fix an embedding ¢y of K into the complex numbers. For any a € O, we
write « > 0 if either the trace of « is positive, or the trace of « is 0 and €p(«) has
positive imaginary part. Then for o, 8 € O we write a > § if a — 8 > 0. Clearly
this gives us a total ordering on O.

Let H denote the set of positive definite unimodular Hermitian matrices with
coefficients in O. Let x: H — NXxNx O be the map that sends a matrix M = (ibl Z)
to the triple (a,d,b). We define a total ordering on H by saying that M; < Mo
if x(M1) < x(Mz) in the lexicographic ordering on N x N x O.

Given any M € H, we say that M is reduced if M < M’ for all M’ congruent
to M. Clearly every M € H is congruent to a unique reduced matrix. The following
algorithm produces the reduced matrix that is congruent to a given M.

Algorithm 3.6.
Input: A positive definite unimodular Hermitian matriz M with coefficients in O,
specified by a,d € Z and b € O such that M = (% g).
Output: The reduced matriz congruent to M.
1. Setad =1.

2. Compute the set A’ of vectors x = (x1,22) € O? such that x*Mx = a’ and such
that x1 and x5 generate the unit ideal of O. If A’ = 0, increment a’ and repeat.

3. Setd =d.

4. Compute the set D' of vectorsy = (y1,92) € O? such that y*My = d’ and such
that y1 and y2 generate the unit ideal of O. If D' = (), increment d’ and repeat.

5. Initialize M to be the empty set.

6. For each x € A" and 'y € D' such that x and y generate O% as an O-module,
let M' be the matriz representing the Hermitian form M written on the basis
x,y of O%, and add M’ to the set M.

7. If M is empty, increment d' and return to Step (4).
8. Find the smallest element M' of M under the ordering of H defined above.
9. Output M’.
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Remark 3.7. In Steps (2) and (4) of Algorithm 3.6, we need to find vectors in 02
of a given length under the quadratic form specified by M. We note that this is a
finite computation: if x = (x1,x2) satisfies x*Mx = n, with M = (% Z), then

Norm(ax; 4 bxa) + Norm(zs) = an.

Thus, to solve x*Mx = n, we can simply enumerate all pairs (u,v) € 0% with
Norm(u) + Norm(v) = an, and keep those pairs for which u — bv is divisible by a.

Note that solving x*Mx = n can be done more quickly when the value of a is
small. Thus, in Algorithm 3.6, once one finds a short vector x = (z1,x2) with z;
and x5 coprime, it is worthwhile to compute any vector y such that x and y
generate O, and to replace M with the congruent form obtained by rewriting M
on the basis x,y.

Theorem 3.8. Algorithm 3.6 terminates with the correct result.

Proof. Let M' = (%,/ g:) be the reduced matrix congruent to M. If P = (31 §1)
is an element of GLo(Q) such that P*MP = M’ and if we set x = (x1,x2)
and y = (y1,¥2), then ¢/ = x*Mx and d' = y*My. By the very definition of the
ordering on H, then, we want to find vectors x and y, each with coordinates that
are coprime to one another, such that x*Mx is as small as possible and y* My is
as small as possible, given that x and y generate O? as an @-module. This is what
the algorithm does. Finally, among all possible such pairs (x,y), we simply need

to choose the one that gives the smallest matrix. O

Hayashida [Hay68| gives a formula for the number of isomorphism classes of
indecomposable principal polarizations on E? in the case where E has CM by a
maximal order.® Hayashida’s proof does not immediately lead to a constructive
method of finding polarizations representing the isomorphism classes, but simply
knowing the number of isomorphism classes is the key to a straightforward algorithm

for producing such representatives.

Algorithm 3.9.
Input: A fundamental discriminant A < 0.

Output: A list of reduced matrices representing the distinct congruence classes of
positive definite unimodular Hermitian matrices with entries in the order
O of discriminant A, separated into the decomposable and indecomposable
classes.

1. Compute the number N of indecomposable polarizations on E? using Hayashida’s
formula.

2. Compute the set D of reduced matrices representing decomposable polarizations,
using Corollary 3.5 and Algorithm 3.6.

3. Initialize T to be the empty set and set P = 0.
4. Increment P, and compute the set S of elements of O of norm P — 1.
5. For every divisor a of P with a < P/a, and for every b € S:

(a) Compute the reduced form M of the matrix (% Pl;a).

3There is a typographical error in Hayashida’s paper. In the second line of page 43, the term
(1/4)(1 — (=1))(m*=1/8 should be (1/4)(1 — (—1)(m*~1)/8)h. Note that the correction involves
both moving a parenthesis and adding an instance of the variable h.
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(b) If M is not contained in DUZL, then add M to the set T.
6. If #T < N, then return to Step (4).
7. Return D and T.

Of course, for our goal of producing genus-2 curves over Q with Jacobians iso-
morphic to E?, we only need the indecomposable polarizations.

Theorem 3.10. Algorithm 3.9 terminates with the correct result.

Proof. The algorithm is very straightforward. Every isomorphism class of principal
polarization appears somewhere on the countable list that we are considering, and
we simply enumerate the polarizations and compute their reduced forms until we
have found the right number of isomorphism classes. O

Remark 3.11. In our applications, when the class group of O has exponent at most 2,
we can speed up our algorithm as follows: once we have a principal polarization M
on E?, we can view the same matrix as giving a polarization on F? for any elliptic
curve ' with CM by O. Since the class group has exponent at most 2, there exists
an isomorphism E? — F2, and pulling M back to E? via such an isomorphism gives
a new positive definite unimodular Hermitian matrix M’. Each time we find a new
reduced polarization M, we compute the reduced forms of the polarizations M’
associated to all the curves F' isogenous to F, and add these reduced forms to the
set D if they are new.

If ¢ is a principal polarization on E? and M is the corresponding Hermitian
matrix, then the automorphism group of the polarized abelian variety (E2, ),
denoted by Aut(E?, ), is isomorphic to the group {P € GLy(O) | P*MP = M}.
Note that if ¢ is indecomposable, so that (E?, ¢) is the polarized Jacobian of a
curve C, then Torelli’s theorem [Lau0l, Appendix]| shows that this group is also
isomorphic to Aut(C). In any case, computing Aut(E?, ¢) is straightforward:
Algorithm 3.12.

Input: A positive definite unimodular Hermitian matriz M = (% 3) with entries
in an imaginary quadratic mazimal order O.
Output: A list of all matrices P € GLy(O) such that P*MP = M.
1. Compute the set A of vectors x = (x1,2) € O? such that x*Mx = a and such
that ©1 and zo generate the unit ideal of O.

2. Compute the set D of vectors y = (y1,y2) € O? such that y*My = d and such
that y1 and yo generate the unit ideal of O.

3. Initialize A to be the empty set.
4. For each x € A and'y € D such that x and y generate O% as an O-module:
(a) Compute b’ = x*My.
(b) Ifb' = b then add the matriz (3} 33 ) to the set A.
5. Output A.
(See Remark 3.7 for an explanation of how to implement the two first steps.)
Theorem 3.13. Algorithm 3.12 terminates with the correct result.

Proof. If P = (73 Y1) € GL2(O) satisfies P*MP = M, then x = (x1,22) and
y = (y1,%2) are vectors in O? such that x* Mx = a and y*My = d and x*My = b.
The algorithm simply enumerates all x and y that meet the first two conditions,
and checks to see whether they meet the third. [
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3.3. Conditions on the polarization. Throughout this section, F is an elliptic
curve with CM by a maximal order O of an imaginary quadratic field K whose
class group has exponent at most 2. Also ¢ is a principal polarization on FE?
corresponding (as in Proposition 3.1) to a positive definite unimodular Hermitian
matrix M with entries in O and M is the field of moduli of the polarized abelian
variety (E?2,¢). We resume our analysis of the condition that M = Q.

Proposition 3.14. Letay, ..., ap be ideals of O representing all of the elements of
the class group of O, and for each i let n; € Z~o generate Norm(a;). Then M = Q
if and only if for every i there exists a matriz P; € GLo(K), with entries in a;,
such that n;M = PMP;.

Proof. Lemma 3.15 below shows that M = Q if and only if M C K, and this
is the case if and only if for every o € Gal(Q/K) there exists an isomorphism
as: (E%,9) = ((E?)%,¢%). To understand this condition, we use the classical
theory of complex multiplication of abelian varieties; the book of Shimura and
Taniyama [ST61] is one possible reference, especially Chapter II.

Under the embedding ¢y: K — C we chose earlier, the isomorphism classes of
elliptic curves over Q C C with CM by O correspond to the lattices ey(a) up to
scaling, for fractional ideals a of @. Since the class group of the order O is 2-torsion,
we have B2 ~ F? for every E and F with CM by O, so we may as well choose
our F so that it corresponds to the trivial ideal O.

Let A be the discriminant of @ and let 6 € O be a square root of A, chosen
so that €g(8) is positive imaginary. Note that the trace dual a' of an arbitrary
fractional O-ideal a is (1/8)a~!. If F is the elliptic curve corresponding to a, then
the dual of F is the elliptic curve corresponding to the complex conjugate of af, and
the canonical principal polarization of F is the isomorphism a — (1/8)a~! given by
x — x/(nd), where n € Q is the positive generator of Norm(a). (See [ST61, § 6.3]
for more details.)

Let ¢g be the product polarization on E2. For a,: E? — (E?)? to give an iso-
morphism between (E?2, ) and ((E”)z, 90"), the following diagram must be com-
mutative:

E? M E? £o E?
. B
(B — M (B — T (Boy.

To express this diagram in terms of lattices, we let a be an ideal corresponding
to E?, we let n = Norm(a), and we let P, be the matrix in GLy(K) corresponding
to a,. Then the preceding diagram becomes

M 1/6

Ox0 Ox0O (1/6)(0 x 0)

pf,i I

no
axa M axa L) (1/86)(@t xa 1.

Thus, there exists an isomorphism (E?,¢) — ((E?)2,¢7) of polarized varieties
if and only if there exists a matrix P, with entries in a, such that nM = P*MP.
Since the Galois group of Q/K acts transitively on the set of elliptic curves with CM
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by O, the field of moduli of (E?,¢) is contained in K if and only if we can find
such a matrix P for each of the ideals ay, ..., a. (]

Lemma 3.15. Let E, ¢, and M be as mentioned at the beginning of this section.
Then M = Q if and only if M C K.

Proof. Let us assume that M C K; we must show that M = Q. Since O has a class
group of exponent at most 2, [Shi71, Exercise 5.8, p. 124] implies that Q(](E)) is
totally real. Let ¢ be any complex conjugation in Gal(Q/Q), so that ¢ acts trivially
on Q(j(E)) and nontrivially on K. Given any ¢ € Gal(Q/Q), we want to show
that (E?,¢) ~ ((E7)%, ¢).

If o acts trivially on K, then such an isomorphism exists, because M C K. Oth-
erwise, ot acts trivially on K, and we have (E?,¢) ~ ((E°")?,¢°"), and therefore
(EY)2, ¢") ~ ((E?)?,¢%). So it is enough for us to show that (E?, @) ~ ((E*)?, ¢").
If we choose our model of F to be defined over Q(j(E)), then E* = E, and we sim-
ply need to show that there exists an element P of GLo(O) such that M = P*MP.

It M= (%2), we can simply take P = (,ba ,dz)- =

At this point, we have reviewed enough CM theory to prove Corollary 3.5.

Proof of Corollary 3.5. We are given an ideal a = (n, ) of O, where n € Z is the
norm of a and where a € O, and we have x,y € Z such that 2n? — y Norm(a) = n.
The complex conjugate @ of a represents the inverse of the class of a in C1(O), and
the matrix P = (2 Y”) takes the lattice O x O C K? onto the lattice ax@. The dual
lattice for ax@is (nd)~1-(axa) (where d is the positive imaginary square root of A as
in the proof of Proposition 3.14) and the product polarization from axa to its dual is
simply multiplication by 1/(nd). Pulling this polarization back to O x O via P gives
us the polarization (nd)~*P*P. Since the product polarization on O x O is 1/6, the
pullback polarization is represented by the endomorphism (1/n)P*P of O x O, and
we compute that (1/n)P* P is the matrix given in the statement of the corollary. O

We close this section by indicating how we can check the criterion given in
Proposition 3.14: namely, given the polarization matrix M and an ideal a with
Norm(a) = nZ, how can we determine whether there exists a matrix P € Mas(a)
that satisfies nM = P*M P?

Suppose there exists such a matrix P. If M = (¢ Z) let us take L = (&), so
that L*L = aM. Let Q = LPL™'. Then the condition nM = P*M P becomes the
condition nId = Q*Q. This equality can only hold if @) is of the form

Q= (j f{) € GLy(K)

where z,y,z,t € K satisfty Norm(z) + Norm(z) = Norm(y) + Norm(t) = n and
Ty + zt = 0. Since we have
bw+y—b2z—bt

p=r7Qr= ("""
@ ( az bzit

) € Ms(a),

we see that we must have z = X/a, y = Y/a, z = Z/a, and t = T/a with
X,Y,Z,T ¢ .

Therefore, to check whether a matrix P with the desired properties exists, it
suffices to compute and store all solutions (X, Z) € a X a to the norm equation
Norm(X) 4+ Norm(Z) = a?n (which can be done efficiently). Then, for every two
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solutions (X, Z) and (Y, T) satisfying XY + ZT = 0, we can check whether the
corresponding matrix P lies in Ma(a). If we obtain such a P for each of the
ideals a; from Proposition 3.14, then the field of moduli for (E?, ) is Q. In fact,
we need only find a P for each a; in a set that generates the class group of O.

3.4. Results. We have implemented the algorithms described in the previous sec-
tions. We were able to test all polarizations on the 65 possible orders identified in
Section 2. The results are presented in Table 2.

h A o #C h A #o #C h A #o #C
1 -3 0 0 4 -84 2 0 8§ —420 10 0
—4 0 0 —120 5 3 —660 16 0
-7 0 0 —132 3 1 -840 22 0
-8 1 1 —168 4 0 —-1092 22 0
—11 1 1 —195 8 0 —1155 32 0
—19 1 1 —228 5 1 —-1320 36 0
—43 2 2 —280 14 0 —1380 34 0
—67 3 3 =312 11 1 —1428 28 0
—163 7 7 —-340 14 0 —1540 46 0
—372 8 0 —1848 46 0
2 —15 0 0 —408 14 0 —1995 56 0
—20 1 1 —435 16 0 —-3003 72 0
—24 1 1 —483 12 0 —3315 128 0
—35 2 0 —520 25 3
—40 2 2 —-532 14 0 16 —5460 128 0
—51 2 0 -555 20 0
—52 2 2 —-595 28 2
—88 4 2 —627 16 0
-91 4 0 —708 15 1
—115 6 0 —715 36 0
—-123 4 0 —760 41 1
—148 5 3 795 28 2
—187 8 0 —1012 28 0
—232 9 5 —1435 64 0
—235 12 0
—267 8 0
—403 18 0
—427 16 0

TABLE 2. The number of indecomposable principal polariza-
tions ¢ and the number of isomorphism classes of curves C with
field of moduli Q for each discriminant A, grouped by class num-
ber h.

There exist 1226 indecomposable polarizations, in total. Our algorithms, im-
plemented in Magma on a laptop with a 2.50 GHz Intel Core i7-4710MQ processor,
took less than 21 minutes to compute all of the polarizations; about 10 minutes
of that time was spent on the largest discriminant. The computation required
about 2.8 GB of memory.
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Once we computed the polarizations, it took about 26 minutes (on the same
laptop) to check the conditions of Proposition 3.14. For this calculation, the largest
discriminant represented more than two-thirds of the computation time.

In the end, we obtained exactly 46 polarizations ¢ such that the principally
polarized abelian surface (E?, ) is isomorphic to the Jacobian of a curve C' with
field of moduli Q. These 46 curves are obtained only from orders whose class groups
have order 1, 2, or 4.

4. COMPUTATION OF INVARIANTS AND FINAL REMARKS

4.1. Invariants of the genus-2 curves C. A genus-2 curve C has field of mod-
uli Q if and only if all of its absolute invariants are defined over Q (see for exam-
ple [LRS12, § 3]). This is in particular true for the triplet (g1, g2, g3) of invariants
defined by Cardona and Quer in [CQO05], which characterizes a genus-2 curve up
to Q-isomorphism and enables one to find an equation y? = f(x) for the curve. We
quickly review here a strategy for obtaining the Cardona—Quer invariants for the 46
curves whose invariants are QQ-rational.

The first quantity we are able to derive is a Riemann matrix 7, using the same
method as [Rit10, § 3.3]. Starting with the positive definite unimodular Her-
mitian matrix M corresponding to the polarization ¢ = ¢y - M, we obtain the
Riemann matrix 7 associated to ¢ and the CM-elliptic curve E ~ C/(Z + Zw)
where w = (1 ++v/A)/2 if A is odd and w = VA otherwise.

This matrix we get is defined up to the action of the symplectic group Sp,(Z).
One then works out a matrix 7y in the orbit of 7 for which the computation of the
theta constants (6;)o<i<o at 7o is fast (see [Lab16] for instance).

A complex model of a curve C' : y? = z(z — 1)(x — A\)(z — X2)(z — \3) with
Riemann matrix 7y can then be classically approximated using Rosenhain’s formu-
las [Ros51, p. 417]

_ 0563 _ 6367

0262
= 0202’ 2_9292’ = o5
1v3 3Y9

)\1 — @

and )\3

By computing the theta constants to higher and higher precision, we are able to
get a sufficiently good approximation of the Cardona—Quer invariants to recognize
them as rationals. The numbers we get are a priori only heuristic as there is no
bound known for the denominators of these rationals; however, we can sometimes
prove that these heuristic values are correct, as follows.

Given a set of Cardona—Quer invariants that we suspect are equal to the in-
variants of a curve whose Jacobian is isomorphic to E? for an E with complex
multiplication, we can easily produce a curve C having those invariants. Then we
can use the techniques of [CMSV17] to provably compute the endomorphism ring of
the Jacobian of C'. If this endomorphism ring is isomorphic to the ring Ms(End E),
then we have provably found a curve of the type we are looking for.

We computed heuristic values for the Cardona—Quer invariants of our 46 prin-
cipally polarized abelian surfaces, and the list of these invariants is available on
authors’ web pages, together with all the programs to compute them. We are grate-
ful to J. Sijsling for computing the endomorphism rings for the Jacobians of 13 of
our 46 curves; he is currently developing a faster and more robust algorithm which
should be able to handle the remaining cases. For each of these 13 curves, the
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endomorphism ring was M (End E), so the heuristic values of the Cardona—Quer
invariants of these curves are provably correct.

We observe for that the 13 provably-correct sets of invariants, all the denom-
inators are smooth integers. It would be very interesting, in the same spirit
as [GLO7, LV15] for the CM genus-2 case, to find formulas to explain the prime
powers dividing these denominators. An example of such a closed formula appears
in the introduction of [Rod00] without any details. The denominators of the 33 sets
of invariants that we have not proven to be correct also are smooth, which provides
some further heuristic evidence that the values are correct.

We present in Table 3 the invariants for a few of the curves we could provably
compute.

A M Cardona—Quer invariants [g1, g2, g3]
2 w+1 4. 55 o . q.g4 _g3
-8 <_w+1 2) [2*-5°,2-3-5% =57
11 2w 19° 3%.11-19°  19°.47
—w+1 2 227 25 7 26
19 2w 5°.29° 5%.7.29%.31.73  5°.17.29°-2719
—w+1 3 922.37" 925 .38 ’ 26 . 310
2 2w 5°.7° 5°.7°.11  3.5%.7
—w 3 22 7 25 ’ 26

o4 2w+l 2.23% 2.23°.421 23°.37
—w+1 4 3 32 ’ 34

40 (2 w+1) {24~55-4352~54-43346977754-13~432]

—w+1 6 3 38 ’ 310
5 2w 5°.173° 5*.173°-112061 5 .7.37-173°
—w 7 22.37 7 25 .38 ’ 26 . 310

TABLE 3. Cardona—Quer invariants for seven of the 46 genus-2
curves with field of moduli Q whose Jacobians are isomorphic
to E?, where E has CM by a maximal order . The discrimi-
nant of O is A, the corresponding principal polarization on E?
is o - M, and w denotes either vA/2 or (1 ++/A)/2, depending
on whether A is even or odd.

4.2. When is Q also a field of definition for C? To conclude let us consider
any of the 46 previous pairs (A, ). We know that there exists a genus-2 curve C/Q
with field of moduli Q such that (Jac(C), j) ~g (A, ¢), where j is the canonical po-
larization on Jac(C). If the order of Aut(A, ¢) ~ Aut(C) is larger than 2, then it is
known [CQO5] that the field of moduli of C'is a field of definition and that there ex-
ists a genus-2 curve Cy: y* = f(x) with f € Q[z] such that (Jac(Co), jo) g (4, ¢)-
In particular @ is also a field of definition for (A4, ¢).
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Proposition 4.1 (Compare to [Rod00, § 4]). The field Q is a field of definition
of C — and therefore of (A, p) — if and only if the order of Aut(A, p) ~ Aut(C)
is larger than 2.

Proof. It remains to prove that when Aut(A, ¢) = {£1}, there is no model of (4, ¢)
over Q. Actually we show there is even no model (B, ) over R. Indeed, an isomor-
phism ¢ : (4, ¢)/C — (B, u)/R, defined over C, would induce an isomorphism

a, =) o (A p) = (4,¢),
for the complex conjugation ¢, such that a,' o, = (1) o p*) o ((p™1)* 0 p) = Id.
Since we have seen that E* = FE, the isomorphism «, can be represented as

a matrix P € GL2(O) such that PP = Id. Moreover the commutativity of the
diagram

2% 2

J

B2 — % S E?
translates into the equality P*MP = M. If we denote M = (£ "), then it is easy
to see that the matrix Py = ( b _db) satisfies the last equality. Any other P = PyR

—a
differs from P, by an automorphism R of (4, ) since R*P*MPR = R*MR = M.
Because the automorphism group of (A, ¢) is {£1}, this means that the only pos-
sible P are +Py. It is easy to check that PyPy = (—Py)(—Py) = —1d, so the

condition PP = Id cannot be satisfied. O

4.3. Provably correct equations for the curves defined over Q. Using Propo-
sition 4.1 we found that exactly 13 of our curves can be defined over QQ, and these 13
are precisely the curves for which we could provably compute the invariants. This is
no coincidence, as having an equation over Q definitely simplifies the computation.
We present these curves in Table 4.
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A M d Equation for C'
- 2 w + 1 2 5
8 (—w 1 9 ) 1 y =z"+x
_ 2 w 1/3 2 _ 5,6 3_ o,
11 (_w+1 2) (—1)Y? 42 =22° +112% — 211
1o 2w _qg ¥ =2°+10262° +6272" + 3898827
—w+1 3 — 627 -192% + 1026 - 19%z — 19°
43 2w L4y Y =2 44876227 4 14192" 4 41935322
—w+1 6 — 1419 - 432° + 48762 - 43°x — 437
67 2w _gr Y=+ T8510627 + 2211a" +1052042040°
—w+1 9 — 2211 - 672° + 785106 - 67z — 67°
9 " y® = 2% + 16354204022° + 5379x*
—163 <_ 1 21) -163 + 533147051052z> — 5379 - 163z
v + 1635420402 - 163%2 — 163°
—20 ( 2 w) V5 y?=2"+52% + 52
—w 3
3 2 w41 2 _ a5 3
24 (—w+1 4 ) V2 y- =32 +8x° 4+ 32z
_ 2 w—+1 2 _ a5 3
40 (—w+1 p ) V5 y? = 92° +402° +9 - 52
2w 2 5 3
—52 - V13 y° =92° +65z° + 9 - 13z
88 20wt s g2 29055 1 28000 + 99 22
—wH1 12 vo=
—148 < 2 ;‘;) V3T y? = 4412° + 53652° + 441 - 37z
—232 2 w1l e ? = 9801z° + 1055602° + 9801 - 29z
—w+1 30 vo=
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