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Abstract. In this paper, we examine the general algorithm for class group

computations, when we do not have a small defining polynomial for the number
field. Based on a result of Biasse and Fieker, we simplify their algorithm,

improve the complexity analysis and identify the optimal parameters to reduce

the runtime. We make use of the classes D defined in [GJ16] for classifying the
fields according to the size of the extension degree and prove that they enable

to describe all the number fields.

1. Introduction

In algebraic number fields, two structures are of particular interest: the class
group, finite, and the unit group, finitely generated. Their computations are main
problems in algorithmic algebraic number theory. Shanks [Sha69, Sha72] first de-
scribed an algorithm, the baby-step–giant-step method, in the special case of qua-

dratic number fields. This method runs in exponential runtime O(|∆K|
1
5 ) under the

General Riemann Hypothesis (GRH), where ∆K denotes the absolute discriminant
of the considered number field.

For imaginary quadratic number fields, Hafner and McCurley [HM89] managed

to compute the class group structure in heuristic subexponential time L|∆K|(
1
2 ,
√

2).
This L-notation is classical when presenting index calculus algorithms with subex-
ponential complexity. Given two constants α and c with α ∈ [0, 1] and c ≥ 0,
LN (α, c) is used as a shorthand for:

exp
(
(c+ o(1))(logN)α(log logN)1−α) ,

where o(1) tends to 0 as N tends to infinity. We sometimes encounter the notation
LN (α) when specifying c is superfluous.

Buchmann [Buc90] extended this method to all number fields. However, the
extension degree, arbitrary, has to be fixed to obtain the heuristic complexity
L|∆K|(

1
2 , 1.7). More recently, the subexponential complexity was reached for all

number fields, without restriction on the extension degree. Biasse and Fieker [BF14]
got an L|∆K|(

2
3 +ε) complexity1 in the general case and L|∆K|(

1
2 ) when the extension

degree n satisfies the inequality n ≤ (log |∆K|)3/4−ε.
For some restricted classes of number fields, Biasse and Fieker [BF14] achieved

an even better L|∆K|(a) complexity with a possibly as low as 1
3 . More precisely,

this improved complexity holds when one knows a defining polynomial with small
coefficients compared to the discriminant of the field. New classes of number fields
have been introduced in [GJ16] in order to widen the conditional improvement of
Biasse and Fieker by looking for such a small defining polynomial.

1For an arbitrary small ε > 0.

1



2 ALEXANDRE GÉLIN

Contribution. We first show that regarding at the classes D introduced in [GJ16]
suffices to consider all number fields. This enables to give a bird’s eye view of the
state of the art concerning class group computations, according to the extension
degree of the number field. We then focus on large degree number fields: we give
a simplified version of the relation collection and, thanks to a better choice for
the parameters, show that it can run in time L|∆K| (a) with a ∈ [ 1

2 ,
2
3 ] instead

of L|∆K|
(

2
3 + ε

)
when the extension degree is large. In addition, we refine the

L|∆K|
(

1
2

)
complexity by calculating the second constant: we obtain a runtime in

L|∆K|

(
1
2 ,

ω−1
2
√
ω

)
. At the very end, using another enhancement on lattice reduction,

we present an improved version whose complexity grows linearly between L|∆K|
(

1
2

)
and L|∆K|

(
3
5

)
instead of L|∆K|

(
2
3

)
.

Outline. The article is organized as follows. In Section 2 we provide a reminder
about index calculus method, applied in the context of class group computation.
Then we classify number fields according to the classes D in Section 3. Finally, the
algorithm is described in Section 4 while Section 5 is devoted to the complexity
analysis. The last improvement is the topic of Section 6.

2. General strategy for class group computation

The current best algorithms for class group computation rely on the index cal-
culus method. It is also the case for factoring integers or computing discrete loga-
rithms in finite fields. A brief summary is as follows:

(1) Fix a factor base composed of small elements and that is large enough to
generate all elements of the group.

(2) Collect relations between those small elements, corresponding to linear
equations.

(3) Deduce the result sought performing linear algebra on the system built from
the relations.

We give more details about the different steps in case of class group computation.
Afterwards, every contribution is examined with respect to this global strategy.

The factor base. We define the factor base B as the set of all prime ideals in OK

that have a norm bounded by a constant B. This bound must be chosen such
that the factor base generates the whole class group. Bach showed in [Bac90,
Theorem 4.4] that assuming the Extended Riemann Hypothesis (ERH), the classes

of ideals with a representative of norm less than 12 (log |∆K|)2
suffice to generate

the class group. However, as the ability to find relations in the collection step
increases with the size of the factor base, we fix

B =  L|∆K|(β, cb),

for values of β and cb with 0 < β < 1 and cb > 0 that are determined later. The
notation  L is identical as the L introduced earlier, except that we have removed

the o(1), in order to consider constants:  LN (α, c) = ec(logN)α(log logN)1−α
.

Thanks to the Landau Prime Ideal Theorem [Lan03], we know that in every num-
ber field K, the number of prime ideals of norm bounded by B, denoted by πK(B),
satisfies

(1) πK(B) ∼ B

logB
.
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As a consequence, the cardinality of the factor base is about B, namely:

N = |B| = L|∆K|(β, cb).

Relation collection. Let pi, 1 ≤ i ≤ N, denote the N prime ideals in the factor
base B. As their classes generate the class group Cl (OK), we have a surjective
morphism φ : Zn −→ Cl (OK) via

(2)
ZN −→ I −→ Cl (OK)

(e1, . . . , eN ) 7−→
∏
i

peii 7−→
∏
i

[pi]
ei ,

and the class group Cl (OK) is then isomorphic to ZN/ kerφ. By computing the
kernel of this morphism, we deduce the class group, which is given by the lattice
of the vectors (e1, . . . , eN ) in ZN for which

∏
peii = 〈x〉 with x ∈ K∗. Thus the

relations that we want to collect are given by x in K∗ such that

(3) 〈x〉 =
∏

peii .

Relation collection is the main part of the algorithm, we give more details about it
in Section 4.

Linear algebra. Once the relations are collected, we store them in a matrix. A
row corresponds to an algebraic number x and the i-th coefficient is the valuation
of the principal ideal 〈x〉 at pi — that is ei in Equation (3). These valuations ei are
computed by looking first at the norm of 〈x〉, as explained in Appendix A. Then,
the structure of the class group is given by the Smith Normal Form (SNF) of the
matrix. More precisely, we first compute the Hermite Normal Form (HNF) with
a pre-multiplier since we need kernel vectors in the verification step (as explained
below). Finally, the class number can be deduced by multiplying the diagonal
coefficients of the HNF while the group structure is given by the diagonal coefficients
of the SNF.

Verification. The group H provided by the linear algebra step is only a candidate
for the class group and has to be verified. Indeed, even assuming that the factor
base is large enough to generate the full class group, the number of relations derived
may be insufficient. In that case, the class group Cl (OK) is only a quotient of the
candidate H. Fortunately we can obtain some information on the class number
from the Class Number Formula:

Proposition 2.1 ([Coh93, Theorem 4.9.12]). Let K be a number field of degree n
with n = r1 + 2r2 where r1 denotes the number of real embeddings and r2 the
number of pairs of complex embeddings. Let hK, RegK, ∆K, wK and ζK(s) denote
respectively the class number, the regulator, the discriminant, the number of roots
of unity and the Dedekind zeta function of K. Then the function ζK(s) converges
absolutely for s with <(s) > 1 and extends to a meromorphic function defined for
all complex s with only one simple pole at s = 1, whose residue satisfies

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · hK · RegK

wK ·
√
|∆K|

.

We recall that this residue can also be expressed as the Euler Product:

(4)
∏
p

1− 1
p∏

p|p

(
1− 1

N (p)

) ,
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product being taken over all prime numbers p. An approximation of this product
may be computed at the very beginning of the algorithm, along with the generation
of the factor base. Indeed Bach proves in [Bac95] that a good enough approxima-
tion is obtained in polynomial time considering only the primes of norm below
O
(
(log |∆K|)2

)
.

Thus we need at least an approximation of the regulator of the number field
in order to carry out this verification. Fortunately, it does not cost too much to
determine a candidate for the regulator once we have our candidate for the class
group. Indeed, the collected relations make it possible to infer one: by looking for
elements in the kernel of the relation matrix, we are computing units of K. Then
once we have found generators of the group spanned by these units, it only remains
to compute a determinant. If these generators form a set of fundamental units,
we get the regulator. Otherwise, we have only found a multiple of the regulator,
because the group spanned by those is a subgroup of the unit group U(K).

In the end, when we have the — hypothetical — class number and regulator,
it is enough to compare their product with the approximation calculated from the
Euler Product. Either the ratio is close to 1 in which case the two quantities are
the correct ones, or it is not and more relations are required. This verification step
works since both class number and regulator are computed decreasingly: if there is
a sufficient number of primes ideals — respectively units — involved, then adding
a relation can only reduce the class number — respectively the regulator — by an
integer factor. As a consequence, the ratio is close to 1 only for hK and RegK.

3. The classification defined by classes D is sufficient

For the discrete logarithm problem in finite fields, all the fields are classified
according to the relative size of their characteristic — small, medium or large. Our
purpose is to derive a similar classification for the number fields. For finite fields,
the cardinality Q is completely determined by the characteristic p and the exten-
sion degree n, according to the equation Q = pn. For number fields, the extension
degree remains, but the characteristic is replaced by the size of the defining polyno-
mial, represented by its height H(T ). Unfortunately, number fields do not provide
any equality similar to Q = pn for finite fields, but only the inequality of [GJ16,
Proposition 2.1]:

(5) |∆K| ≤ n2nH(T )2n−2.

Therefore, we choose the extension degree as the main parameter of our classifi-
cation. The Minkowski’s bound [PZ89, Corollary 2.9] induces that n = O(log |∆K|),
because every non-zero integral ideal has a norm in N∗. Thus we want to express n
in terms of log |∆K|. Fortunately, this choice is a perfect match with the classes D
introduced in [GJ16].

Definition 3.1 ([GJ16, Section 3]). Let n0 > 1 be a real parameter arbitrarily
close to 1, d0 > 0, α ∈ [0, 1] and γ ≥ 1−α. The class Dn0,d0,α,γ is defined as the set
of all number fields K of discriminant ∆K that admit a monic defining polynomial
T ∈ Z[X] of degree n that satisfies:

1

n0

(
log |∆K|

log log |∆K|

)α
≤ n ≤ n0

(
log |∆K|

log log |∆K|

)α
and

d = logH(T ) ≤ d0(log |∆K|)γ(log log |∆K|)1−γ .(6)
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We recall that the factor log log |∆K| has been introduced to simplify the com-
plexity analysis, while the condition γ ≥ 1 − α is a direct consequence of Equa-
tion (5). We emphasize that the extension degree carries more information than
the size of the coefficients of a defining polynomial — while giving the extension
degree or the characteristic of a finite field carries the same information. Indeed,
there exists an infinity of defining polynomials, and the quality of the smallest one
depends on the number field: it is not known that we can always find one satisfying
the lower bound γ = 1−α. That is why classifying number fields by their extension
degree n — that is by α ∈ [0, 1] — makes more sense. Then, for each α, there exists
additional disparities according to γ, which is always greater than 1− α.

Here is the main theorem obtained in [GJ16]:

Theorem 3.2. Under ERH and smoothness heuristics, for every number field K
that belongs to Dn0,d0,α,γ , there exists an L|∆K|(a, c) algorithm for class group and

unit group computation for some c > 0 and a = max
(
α, γ2

)
.

Thanks to the algorithm described in [GJ16], we can restrict our study to the
classes D with γ ≤ 1 when α is in

[
0, 1

2

]
. In these cases, Theorem 3.2 shows that we

can compute the class group in time below L|∆K|
(

1
2

)
. When α ≥ 1

2 , it is too costly
to look for a small polynomial. We focus in this article on large degree number
fields, the ones where α ≥ 1

2 .
At this point, it still remains to prove that considering classes D with α ∈ [0, 1]

suffices. At first sight, the Minkowski theorem only results in n = O(log |∆K|) and
implies that every number field belongs to a class D with α ≤ 1+ε for an arbitrarily
small ε > 0. However, a more accurate analysis leads to the following result:

Proposition 3.3. Given n0 > 1 and α > 1, there does not exist an infinite fam-
ily (Ki)i≥1 of number fields with discriminants |∆Ki

| and degrees ni that satisfy

1

n0

(
log |∆Ki

|
log log |∆Ki

|

)α
≤ ni ≤ n0

(
log |∆Ki

|
log log |∆Ki

|

)α
.

Proof. We proceed by contradiction. Let (Ki)i≥1 be an infinite family of number
fields whose degrees ni satisfy

1

n0

(
log |∆Ki |

log log |∆Ki
|

)α
≤ ni.

We provide an upper bound in the statement of the proposition as it is in the
definition of classes D. However, we only consider this inequality because it is the
one that is problematic. The Minkowski’s bound [PZ89, Corollary 2.9] states that
for a field K of degree n,

(7)
nn

n!
·
(π

4

)n
2 ≤

√
|∆K|.

Combining Equation (7) with the inequality n! ≤ e nn+ 1
2 e−n derived from the

Stirling formula [Moi30, Sti30], we obtain n
(
2 + log π

4

)
≤ log |∆K|+2+log n. Let A

denote the constant 2 + log π
4 > 1. Then for all i ≥ 1, we have

A

n0

(
log |∆Ki

|
log log |∆Ki |

)α
≤ log |∆Ki |+2+log n0+α (log log |∆Ki | − log log log |∆Ki |)

=⇒ 0 <
A

n0
≤ (log log |∆Ki

|)α

(log |∆Ki
|)α−1 +(2 + log n0 + α log log |∆Ki

|)·
(

log log |∆Ki
|

log |∆Ki
|

)α
.
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Finally, as the set of number fields having bounded discriminant is finite, it
follows from our initial assumption that the family of discriminants (|∆Ki |)i≥1

tends to infinity. But in that case, as α is chosen strictly greater than 1, the right
hand side tends to 0, which leads to a contradiction. �

Example 3.4. To illustrate this proposition, we consider cyclotomic fields, which
are known to be fields with small discriminants and large degrees.

For the l-th cyclotomic field K = Q(ζl), with l =
∏
pkii and denoting by ϕ the

Euler totient function, the extension degree satisfies

[Q(ζl) : Q] = ϕ(l) =
∏

ϕ
(
pkii

)
=
∏

(pi − 1)pki−1
i ,

and the discriminant is (see [Was97, Proposition 2.7])

|∆K| =
l
ϕ(l)∏

p
ϕ(l)/pi−1
i

.

Thus we obtain

(8) ϕ(l) =
log |∆K|

log log |∆K|
·
∑

(ki − 1) log pi + log(pi − 1)∑
(ki − 1

pi−1 ) log pi

(
1 + o(1)

)
,

and as (ki−1) log pi+log(pi−1) ≈ (ki− 1
pi−1 ) log pi when pi or ki tends to infinity,

we conclude that the ratio of the sums tends to 1 when l tends to infinity.

For instance, when l = p, the second factor in Equation (8) is p−1
p−2

log(p−2)+log log p
log p ,

which tends to 1 as p goes to infinity, while for l = pk with p fixed and k tending
to infinity, the second factor becomes k

k− 1
p−1

(1 + o(1)).

Hence all cyclotomic fields asymptotically belong to a class D with α = 1. Fi-
nally, Proposition 3.3 leads to the following statement:

Corollary 3.5. Asymptotically, the classes Dn0,d0,α,γ with α ∈ [0, 1] include all
number fields.

Note that despite [GJ16, Corollary 3.3], we do not specify the condition γ in
[1 − α, 1] in this result. Indeed when α ≥ 1

2 , finding the smallest height defining
polynomial costs more than computing the class group. In these cases, it is prefer-
able to work with the input polynomial. Another possibility is to perform only a
partial reduction. More precisely, we may use the reduction algorithm described
in [Coh93, Section 4.4] which consists in computing an LLL-reduced basis of the
lattice of algebraic integers. Assuming that an integral basis is already known, the
runtime is polynomial in log |∆K|. Eventually, for the reminder of the article, we
focus our study on classes D with α ∈

[
1
2 , 1
]

and γ ≥ 1− α. Indeed, although the

algorithm works for α ≤ 1
2 , the complexity is larger than what is stated in [GJ16].

4. The relation collection

The core idea is presented by Biasse in [Bia14]: the generation of the relations
based on BKZ-reductions of ideal lattices. The strategy is still the same as Buch-
mann’s work [Buc90]: we reduce an ideal a, using lattice techniques, in order to
find another ideal b that belongs to the same class. While the algorithm of Buch-
mann looks for a shortest non-zero vector — whose runtime is polynomial in the
size of the discriminant but exponential in the extension degree — the method of
Biasse involves BKZ-reductions, that offer a trade-off between the time spent in
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the reduction and the approximation factor of the short vectors. This leads to a
subexponential algorithm that allows both the discriminant and the degree to tend
to infinity. When combined with the linear algebra and regulator computation, it
leads to the following theorem:

Theorem 4.1. [BF14, Theorem 6.1] Under ERH and smoothness heuristics, the
presented algorithm computes the class group structure together with compact rep-
resentations of a fundamental system of units of a number field K of degree n and
discriminant ∆K in time L|∆K|(a) with

• a = 2
3 + ε for ε > 0 arbitrary small in the general case;

• a = 1
2 when n ≤ (log |∆K|)3/4−ε for ε > 0 arbitrary small.

Figure 1 presents the complexity of class group computations as a function of α,
i.e., the extension degree, prior to the improvements that are presented later in
this article. It is based on the classification obtained in Section 3 and, for α ≤ 1

2 ,
on the results of [GJ16].

depending on γ

L|∆K|
(

1
2

)
L|∆K|

(
2
3 + ε

)
L|∆K|

(
max(α, γ2 )

)
[BF14] [BF14]

[GJ16]

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 1. Complexity obtained by prior algorithms.

4.1. Description of the algorithm of Biasse and Fieker. In [Bia14], and so
in [BF14], the relation collection is derived from a reduction algorithm that given
an ideal a returns a smooth ideal b that is in the same class as a. Then, applying
this reduction to every ideal belonging to the factor base, we get the relations we
are expecting.

We recall that the factor base B = {p1, . . . ,p|B|} consists of all prime ideals

of OK whose norm is below a bound B =  L|∆K|(β, cb), for β ∈ [0, 1] and cb > 0.
We also fix ε > 0 arbitrarily small and a an ideal of OK.

From the ideal a, Biasse and Fieker derive an ideal c in OK by c = N (a) · a−1.
This step consists of taking the inverse of a, and includes a norm multiplication
to keep an integral ideal. Then, similar to what Buchmann did, they choose an
element x ∈ c, that is small in a certain sense, and define b as the unique integral
ideal that satisfies 〈x〉 = cb. This b is well-defined, as x ∈ c implies 〈x〉 ⊂ c.

Finally, b is in the same class as a, as b = 〈x〉 c−1 =
〈

x
N (a)

〉
a.
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Lattice reductions. For finding these small elements in given ideals, it is common
to consider an ideal as a lattice. For a degree-n number field K, there exist n =
r1 + 2r2 complex embeddings from K to C. We almost always order them in
the following way: σ1, . . . , σr1 for the real embeddings and σr1+r2+i = σr1+i for
1 ≤ i ≤ r2. Hence, we get an embedding σ, called the canonical embedding,

σ : K −→ Rr1 ×Cr2 .

For practical purpose, it is often considered as an r1+2r2 = n-tuple of real numbers.

Lemma 4.2. For any integral ideal a of K, σ(a) is a lattice of Rn and

detσ(a) =
√
|∆K| · N (a).

Finding small elements in a lattice is a well-studied problem. We know that
this problem is exponential in the dimension if we want the smallest vector, but
polynomial if we allow an exponential approximation factor. A balance has been
found using BKZ algorithm: a subexponential algorithm with a subexponential
approximation factor. It consists in reducing blocks of size β ≤ n, so that the
complexity is exponential in the block-size β. The result we use in this article is
derived from the work of Micciancio and Walter [MW16].

Theorem 4.3. The smallest vector v output by the BKZ algorithm with block-size β
has a norm bounded by

‖v‖ ≤ β
n−1

2(β−1) · (detL)
1
n .

The algorithm runs in time Poly(n, log ‖B0‖)
(

3
2

)β/2+o(β)
, where B0 is the input

basis.

Proof. The bound we get is a direct consequence of [MW16, Theorem 1]. We
only replaced the Hermite constant γβ by an upper bound in O (β). The cost
analysis is derived from a quick study of [MW16, Algorithm 1], and the complexity

of the Shortest Vector Problem (SVP) is below
(

3
2

)β/2+o(β)
operations, according

to [BDGL16]. �

The difference between the works of Buchmann and Biasse-Fieker appears in the
way to choose the small element x in the ideal c: Biasse and Fieker replace shortest
vector computations as used by Buchmann by BKZ-reductions.

Smoothness of ideals. We provide in Appendix A a brief reminder about smooth-
ness properties and tests, for ideals in number fields. The main assumption we need
to do is the following one. It is a direct consequence of what we know for integers.

Heuristic 4.4. The probability P(x, y) that an ideal of norm bounded by x is
y-smooth satisfies

P(x, y) ≥ e−u(log u)(1+o(1)) for u =
log x

log y
.

Because of the assumption of Heuristic 4.4, we know that we have to repeatedly
select elements in a before finding one that leads to a smooth ideal b. Hence, we
require a randomization process that given the ideal a, produces as many ideals as
required to guarantee to get a smooth b. This is done by considering ideals of the
form a ·

∏
peii , where the pi are prime ideals whose norms are below the smoothness

bound B.
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Then for each ideal ã = a ·
∏

peii , they compute the BKZβ-reduced basis of the

integral ideal c̃ = N (ã) · ã−1, with a block-size β as determined below. This BKZ-
reduction is performed on the ideal lattice σ(c̃), defined by the canonical embedding
of c̃. As recalled earlier, it may be viewed as a lattice in Rn using the Minkowski
map.

Denoting by xv the algebraic integer corresponding to the smallest vector v of

the BKZ-reduced basis, they set b̃ =
〈

xv
N (ã)

〉
ã. Then b̃ is in the same class as ã

and

(9) N (b̃) ≤ β
n(n−1)
2(β−1)

√
|∆K|.

Indeed N (c̃) = N (ã)n−1 and ‖v‖ ≤ β
n−1

2(β−1)N (c̃)
1
n |∆K|

1
2n from Theorem 4.3 and

Lemma 4.2. Then N (b̃) ≤
(
‖v‖
N (ã)

)n
N (ã) leads to the expected result.

If b̃ splits over the factor base B, then there exist integers e′i such that b̃ =
∏

p
e′i
i .

Thus, taking care of the randomized factor, we get that the ideal xv
N (ã)a also splits

over B as
∏

p
e′i−ei
i . In the end, if a splits over B, then the principal ideal〈

xv
N (a)

〉
also splits over B.

Therefore we have derived a relation in the kernel of the surjective morphism defined
in Equation (2). If b̃ does not split, then we try another ã. To bound the number
of relations that would be sufficient, they state the following heuristic. Because at
least N = |B| are required, they choose the largest bound that does not increase
the complexity.

Heuristic 4.5. There exists a value K that is negligible compared with |B| such
that collecting K · |B| relations suffices to obtain a relation matrix that has full-rank.

Finally, using the right parameters and ideals a from the factor base, they get
the complexities given in Theorem 4.1. With a factor base size in L|∆K|(a) and a
block-size (log |∆K|)a, the overall complexity turns out to be in L|∆K|(a).

4.2. Our proposition for a simpler algorithm. Instead of precisely studying
the complexity of the algorithm of Biasse and Fieker, we rather provide a simpler
version, more adapted to our problem. We focus on the relation collection in class
group computations for number fields, without using information brought by the
defining polynomial. Hence, ideals are viewed as lattices in Rn.

First we do not do the reduction of a specific ideal, but we take as inputs
random power-products of factor-base elements. Let k,A > 0 be integers in
Poly(log |∆K|). We choose k prime ideals pj1 , . . . ,pjk in the factor base. For

any k-tuple (e1, . . . , ek) ∈ {1, . . . , A}k, we set a =
k∏
i=1

peiji and we have

N (a) = N

(
k∏
i=1

peiji

)
≤

k∏
i=1

N
(
pji
)ei ≤ L|∆K| (β, cb)

k·A
.

This initialization step can be done by choosing the tuple (e1, . . . , ek) uniformly at
random and k prime ideals in B. Since from Landau’s Prime Ideal Theorem [Lan03],
|B| = L|∆K|(β, cb), the set of possible samples is large enough for our purposes. In
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addition, the norm of the input ideals a is always polynomial in the size of the
factor base.

Second we reduce the lattice defined by the ideal a itself, not its normalized
inverse. Instead of performing the normalization explained in the previous section,
we directly search for a small vector in the ideal a — more precisely, in the lattice
σ(a) defined by the canonical embedding. Hence we find a small vector v that is
the embedding of an algebraic integer xv. Because xv lies in a, there exists a unique
integral ideal b such that

〈xv〉 = ab.

The attentive reader should point out that the ideals a and b do not belong to
the same ideal class as before. However, this is not so important, because b−1 for
instance shares the same class with a. Our ultimate goal is to figure out a principal
ideal that is B-smooth, and this is achieved with our method too.

For the recovery of the algebraic integer xv associated to the vector v, one can
make use of the transformation matrix corresponding to the variable change. An-
other possibility is to work directly with the conjugates and go back to the algebraic
representation using round-off, as mentioned in [Coh93, Section 4.2.4].

Third we use the reduction algorithm described by Espitau and Joux in [EJ18].
It works on the Gram matrix of the lattice instead of the basis matrix, and requires
less precision. From a practical perspective, their algorithm is able to ensure that
the input precision suffices and certifies that the output is an exact reduced basis.
A precision analysis similar to the one in [GJ16, Section 5] leads to the conclusion
that the required precision is polynomial in the size of the input. Indeed, we only
have to replace the weight term ck by the norm of the ideal L|∆K|(β, cb)

k·A whose
size is still polynomial in log |∆K|.

Algorithm 1 Deriving relations from BKZβ-reduction

Input: The factor base B, the block-size β, the bounds k and A for building ideals.
Output: The relations stored.

1: while not enough relations are found do
2: Choose at random k prime ideals pj1 , . . . ,pjk in the factor base B
3: Choose at random k exponents ej1 , . . . , ejk in {1, . . . , A}
4: Set a =

∏
peii , for i ∈ {1, . . . , |B|}, with ei = 0 if i /∈ {j1, . . . , jk}

5: Find a BKZβ-reduced basis of a
6: Let xv denote the algebraic integer corresponding to the smallest vector of

this basis
7: Set b as the unique ideal such that 〈xv〉 = ab
8: if b is B-smooth then
9: Let e′i such that b =

∏
p
e′i
i

10: Store the relation 〈xv〉 =
∏

p
ei+e

′
i

i

11: end if
12: end while

Remark 4.6. Another improvement should be to test for smoothness all the elements
whose norms are below the bound given by the theoretic study of BKZ reduction.

The first vector output by the BKZ reduction has norm below β
n−1

2(β−1)N (a)
1
n |∆K|

1
2n

and this bound is the one we used for the complexity analysis. However, if several
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small vectors have their norm below this bound, then the rest of the algorithm works
similarly for them, and we have saved the cost of BKZ reductions. Hence, one may
try the first small linear combinations between vectors of the reduced basis output
after reduction. This is only a practical improvement, because asymptotically the
number of BKZ reductions performed is not taken into account (see Section 5).

The algorithm stops when enough relations are collected. At this point, it is nec-
essary to rely on a heuristic (as Heuristic 4.5) in order to guarantee the result. We
propose a new one that suffices for our purposes. We want the number of relations
to be sufficient to generate the whole set of relations described in Equation (2).
We emphasize that there exist ideals in the factor base that are more important:
the ones whose norm is below the Bach bound 12(log |∆K|)2. Thus we consider
that the matrix construction is completed when the number of relations is larger
than the number of ideals that occur and when all ideals of norm below Bach’s
bound are involved in at least one relation. This last condition means that the
submatrix built from all the relations and only those ideals must have full-rank. In
comparison with Heuristic 4.5, our relation matrix may contain all-zero columns,
which correspond to ideals in the factor base that are not involved in any of the
relations. By construction their norms are necessarily larger than 12(log |∆K|)2.

Heuristic 4.7. There exists K negligible compared with |B| such that collecting
K · |B| relations suffices to obtain a relation matrix that generates the whole lattice
of relations.

4.3. Parameter settings. We consider as input a number field K ∈ Dn0,d0,α,γ ,
with α ≥ 1

2 . We stress that no information is needed on the size of the defining
polynomial — namely on γ — for this algorithm. Table 1 lists the optimal choices
for the factor-base bound B and the block-size β depending on α, with a transition
at α = 3

4 (as already mentioned by Biasse and Fieker). The parameter cb > 0 is
going to be determined later, based on the complexity analysis.

B β

1
2 ≤ α ≤

3
4  L|∆K|

(
1
2 , cb

)
(log |∆K|)

1
2

3
4 < α ≤ 1  L|∆K|

(
2α
3 , cb

)
(log |∆K|)

2α
3

Table 1. Optimal choices for the factor-base bound and block-size
depending on the extension degree.

5. Complexity analyses

5.1. The case α ≤ 3
4 . According to [BF14], when α ≤ 3

4 , we know that our

algorithm should run in time L|∆K|
(

1
2 , c1

)
. We provide a detailed analysis to find

an explicit expression for the constant c1. Let K be a number field belonging
to Dn0,d0,α,γ with α ∈

[
1
2 ,

3
4

]
, γ ≥ 1 − α, d0 > 0 and n0 > 1. The factor base B

is fixed as the set of all prime ideals of norm below B =  L|∆K|
(

1
2 , cb

)
, with cb > 0

to be determined, and the block-size used in BKZ-reduction is β = (log |∆K|)
1
2 ,

according to Table 1.
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First, we analyze the BKZ-reduction. Before looking at the output, we focus on
the cost of the reduction. By construction of ideal a — see Section 4.2 — its norm
is polynomial in L|∆K|

(
1
2

)
. Theorem 4.3 states that BKZ-reduction runs in time

Poly (n, logN (a)) ·2O(β). Because the norm of a is upper bounded, it only remains
to bound the factor 2O(β). Denoting by C the constant in the O, we asymptotically
obtain log 2O(β) = C · log 2 · (log |∆K|)

1
2 ≤ c(log |∆K|)

1
2 (log log |∆K|)

1
2 for any

constant c > 0. Thus, we have shown that the runtime of the reduction algorithm
is below L|∆K|

(
1
2 , c
)

for every c > 0.
Second, we estimate the norm of the new ideal b built from the smallest vector

returned by the reduction algorithm. From Theorem 4.3 and Lemma 4.2, we deduce
that the smallest vector v of the BKZβ-reduced basis has a norm that satisfies

‖v‖ ≤ β
n−1

2(β−1)N (a)
1
n |∆K|

1
2n . As N (xv) ≤ ‖v‖n, we directly derive that the norm

of b is upper bounded by N (b) ≤ β
n(n−1)
2(β−1)

√
|∆K| so that we deduce2

logN (b) ≤ 1

2
log |∆K|+

n2
0

4
(log |∆K|)2α− 1

2 (log log |∆K|)1−2α

≤ 1

2
log |∆K|+ c(log |∆K|)2α− 1

2 (log log |∆K|)1−2α+ 1
2 for all c > 0

≤ 1

2
log |∆K|

(
1 + o(1)

)
=⇒ N (b) ≤ L|∆K|

(
1,

1

2

)
.

Third, we have to express the probability for such a b to be B-smooth. Assuming
Heuristic 4.4 allows us to get a probability of

L|∆K|

(
1

2
,

1

4cb

)−1

.

Hence, on average, testing L|∆K|

(
1
2 ,

1
4cb

)
ideals a leads to a single ideal b that

is B-smooth and thus to one relation. Assuming Heuristic 4.7, we need to find
L|∆K|

(
1
2 , cb

)
relations. This requires testing for smoothness

L|∆K|

(
1

2
,

1

4cb
+ cb

)
ideals. From Appendix A, we know that each test costs LL|∆K|(

1
2 )
(

1
2

)
= L|∆K|

(
1
4

)
,

which is negligible. The reduction step, whose runtime is below L|∆K|
(

1
2 , c
)

for
every c > 0, is also negligible. Hence the global complexity of the relation collection
step is given by the number of ideals that we test, that is

L|∆K|

(
1

2
,

1

4cb
+ cb

)
.

Complexity for the class group computation. Now that we know the com-
plexity of the collection step, we look at the remaining parts of the computation to
get the class group structure, in order to determine the best cb. The relations are
stored in a matrix of size K · N × N , with N = |B| = L|∆K|

(
1
2 , cb

)
. The results

regarding linear algebra, precision and regulator computation are already studied

2Note that it is the same bound as in Equation (9). Our adjustments in the algorithm do not
affect this bound.
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by Biasse and Fieker in [BF14]. They show [BF14, Proposition 4.1] that the class
group structure is inferred from the relation matrix in time L|∆K|

(
1
2 , (ω + 1)cb

)
,

where ω denotes the matrix multiplication exponent. This result essentially relies
on the HNF algorithm of Storjohann and Labahn [SL96, Theorem 12].

The best choice for cb — i.e., the one that minimizes the complexity — follows
from balancing the runtimes of the collection and linear algebra phases. Thus the
parameter cb > 0 should satisfy

1

4cb
+ cb = (ω + 1)cb ⇐⇒ cb =

1

2
√
ω
.

Theorem 5.1. Assuming ERH and Heuristics 4.4 and 4.7, for every number
field K that belongs to Dn0,d0,α,γ with α ∈

[
1
2 ,

3
4

]
, our algorithm computes the

class group structure and the regulator with runtime

L|∆K|

(
1

2
,
ω + 1

2
√
ω

)
.

Remark 5.2. We recall that ω denotes the exponent arising in the complexity of
matrix multiplication. The smallest known value is ω = 2.3728639 (see [Gal14])
which correspond to the value 1.095 for the second constant. In practice, we use the
Strassen algorithm [Str69] where ω = log2 7 ≈ 2.807, leading to the second-constant
value 1.136.

5.2. The case α > 3
4 . We follow the same path as in the previous case although

some adjustments are made. We start by mentioning that our final complexity is
much better than the one announced in [BF14]: we manage to replace the first
constant 2

3 + ε by 2α
3 , which is always smaller, particularly when α is close to 3

4 .
Furthermore, our second constant can be chosen arbitrarily small, which we denote
by L|∆K|

(
2α
3 , o(1)

)
.

This time, K belongs to Dn0,d0,α,γ with α ∈
(

3
4 , 1
]
. The smoothness bound is

fixed to B =  L|∆K|
(

2α
3 , cb

)
, cb > 0, and the block-size is β = (log |∆K|)

2α
3 . The

bound on the norms N (a) is polynomial in L|∆K|
(

2α
3

)
, because of the parameters

we used for constructing the ideals a. In the same way as in Section 5.1, we show
that the runtime of the reduction algorithm is below L|∆K|

(
2α
3 , c

)
for every c > 0.

The bound we derive for the norm of the new ideal built is

logN (b) ≤ 1

2
log |∆K|+

αn2
0

3
(log |∆K|)

4α
3 (log log |∆K|)1−2α

≤ 1

2
log |∆K|+ c(log |∆K|)

4α
3 (log log |∆K|)1− 4α

3 for all c > 0

≤ c(log |∆K|)
4α
3 (log log |∆K|)1− 4α

3 for all c > 0.

Assuming Heuristic 4.4 and fixing any c > 0, if we take cb =
√

2αc
3 in the

definition of B, then the probability for ideal b to be B-smooth is

L|∆K|

(
2α

3
, cb

)−1

.

Hence we conclude that testing L|∆K|
(

2α
3 , 2cb

)
ideals suffices for the entire collection

phase. Again, the runtime L|∆K|
(
α
3

)
to perform a single smoothness test can be

neglected.
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Complexity for the class group computation. The global complexity of the
class group computation follows directly, because the runtime of the linear algebra
step is obtained by multiplying the second constant 2cb by a constant factor ω+ 1.
As the constant cb could be chosen arbitrarily small (but positive), we get the
following theorem.

Theorem 5.3. Assuming ERH and Heuristics 4.4 and 4.7, for every number
field K that belongs to Dn0,d0,α,γ with α ∈

(
3
4 , 1
]
, our algorithm computes the class

group structure and the regulator with runtime

L|∆K|

(
2α

3
, o(1)

)
.

We can now update Figure 1, by taking into account the results of Theorems 5.1
and 5.3. This is presented in Figure 2.

depending on γ

L|∆K|
(
max(α, γ2 )

)
L|∆K|

(
1
2 ,

ω−1
2
√
ω

)
L|∆K|

(
2α
3 , o(1)

)
[GJ16]

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 2. Complexity obtained by our algorithms.

6. Using HNF to get an even smaller complexity

We have a complexity between L|∆K|
(

1
2

)
and L|∆K|

(
2
3

)
, which grows linearly

for classes D with α ≥ 3
4 . We want to reduce this worst case using Cheon’s trick,

that allows to output a shorter vector than in the general case. It relies on the
reduction of a sublattice that has smaller dimension than the full lattice, provided
that the input lattice has small discriminant. This method seems to be folklore,
but his note [CL15] gives a detailed analysis and we refer to it as Cheon’s trick.

Lemma 6.1. Given (b1, . . . , bn) a basis in HNF of an n-dimensional lattice L ⊂ Rn,
we have, for any 1 ≤ i < n,

det [b1, . . . , bi] ≤ det [b1, . . . , bi+1] .

In particular, for any sublattice L′ generated by the m first vectors b1, . . . , bm, we
have

detL′ ≤ detL.
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Remark that both the n-th root of the determinant and an exponential factor in n
appear in the bound of Theorem 4.3. In most cases, the term with the determinant
prevails. However, when the determinant is small, the approximation factor can be
larger. The idea behind Cheon’s trick is then to reduce a lattice of smaller dimension
in order to reduce this approximation factor. We fix the block-size β ≤ n and look
at the output of BKZ performed on the sublattice L′ generated by the m first
vectors b1, . . . , bm of an HNF basis. From Lemma 6.1, we get

‖v‖ ≤ β
m
2β · (detL′) 1

m ≤ β
m
2β · (detL)

1
m .

The condition we require on the determinant of the lattice is detL ≤ β
n2

2β :
otherwise, for every m ≤ n, the term (detL)

1
m is dominating. Assuming that

detL ≤ β
n2

2β , we identify the optimal sub-dimension m in {β, . . . , n} depending
on β that minimizes this upper bound: it corresponds to the balance between the

two factors, that is m =
⌊√

2β logβ(detL)
⌉
. We fix m to this value and we obtain

the following corollary.

Corollary 6.2. For any integer lattice L ⊂ Rn of rank n such that detL ≤ β
n2

2β ,
using BKZ reduction with block-size β along with Cheon’s trick permits to output a
short vector v that satisfies

logβ ‖v‖ ≤
√

2

β
logβ(detL)

(
1 + o(1)

)
.

This algorithm runs in time Poly(n, log ‖B0‖) ·
(

3
2

)β/2+o(β)
, with B0 the input basis.

Proof. We consider the sublattice of dimension m, for m as defined above. The
condition on the determinant of L ensures that our value of m is effectively lower
than n. Then, by Theorem 4.3 and Lemma 6.1, we have

‖v‖ ≤ β
m
2β · (detL)

1
m = β

√
(2/β) logβ(detL)

(
1+o(1)

)
,

which yields the announced result — the (1 + o(1)) factor appears because of the
integer approximation of m. �

As shown in this section, the complexity we are able to reach with this method
is L|∆K|

(
2α+1

5

)
. It varies linearly between L|∆K|

(
1
2

)
and L|∆K|

(
3
5

)
< L|∆K|

(
2
3

)
.

Hence, we fix the smoothness bound B =  L|∆K|
(

2α+1
5 , cb

)
, with cb > 0 to be deter-

mined. Also, the block-size used for BKZ-reductions is set to β = (log |∆K|)
2α+1

5 .
Overall, the path followed by this improved version of our algorithm is essentially
similar to the one described in Section 4.2. We only mention the adjustments in
the reminder of the section.

First, we need to work with an integral lattice. Indeed as we begin by computing
the HNF of the lattice, it must be defined over Z. This is not a problem, as
we already mentioned. We know that the required precision is polynomial in the
size of the entries. Practically, we approximate the Gram matrix and use the
implementation of [EJ18]. We also mention the special case of totally real number
fields where no approximation are required as the Gram matrix is integral.

Second, to ensure that the hypothesis of Corollary 6.2 is satisfied, we need a
bound on the determinant of the input lattice. As we want a lattice with small



16 ALEXANDRE GÉLIN

determinant as input, we first perform a rough reduction, using the classical BKZ
algorithm — that is without Cheon’s trick. Given an ideal a constructed as above
as a power-product of elements in the factor base and denoting by v the first vector
of the BKZ-reduced basis, we define the ideal b as the unique integral ideal that
satisfies

〈xv〉 = ab.

Thanks to the analysis presented in Section 5.2, we know that the norm of
this ideal b is upper bounded by L|∆K|

(
8α−1

5

)
. We are in the case α > 3

4 , so that
8α−1

5 > 1. The determinant of the lattice corresponding to the canonical embedding

of b is N (b) ·
√
|∆K|. Hence we cannot expect that this quantity is smaller than

L|∆K|(1), so we look for an ideal b that is B̃-smooth for B̃ =  L|∆K|(1, 1). According
to Proposition A.5, each smoothness test costs

LL|∆K|(1)

(
1

2

)
= L|∆K|

(
1

2

)
and assuming Heuristic 4.4, testing about L|∆K|

(
8α−6

5

)
ideals suffices on average.

In addition, the number of ideals in every smooth decomposition is upper bounded

by (log |∆K|)
8α−6

5
(
1 + o(1)

)
. The complete runtime of this smoothness phase is in

L|∆K|
(

1
2

)
, as 0 < 8α−6

5 < 2
5 , which is outweighed by the initial BKZβ reduction,

whose cost is L|∆K|
(

2α+1
5 , o(1)

)
.

In the end, we have ideals b1, . . . ,bl whose canonical embeddings have determi-

nant in  L|∆K|(1, 1) < β
n2

2β = L|∆K|
(

8α−1
5

)
and which satisfy

∏
bi = b. We notice

that for the application of Corollary 6.2, the lower bound  L|∆K|(1, 1) does not have
to be reached. However, as the quality of the output relies on this quantity — a
factor logβ detL appears in the exponent — we minimize it in order to get the best
possible output.

For each ideal lattice σ(bi), we may apply Cheon’s trick combined with BKZ-
reduction. As for all i it is the case that log (detσ(bi)) = C log |∆K| for a C > 0,
a small vector vi is found with norm satisfying

log ‖vi‖ ≤

 2C log |∆K|

(log |∆K|)
2α+1

5 log
(

(log |∆K|)
2α+1

5

)
 1

2

log
(
(log |∆K|)

2α+1
5

) (
1 + o(1)

)
≤

√
2C(2α+ 1)

5
(log |∆K|)

2−α
5 (log log |∆K|)

1
2
(
1 + o(1)

)
≤ c (log |∆K|)

2−α
5 (log log |∆K|)1− 2−α

5 for every constant c > 0.

As we did for the earlier analyses, we bound the norm of the algebraic integer xvi
associated to the vector vi. We obtain the inequality N (〈xvi〉) ≤ L|∆K|

(
4α+2

5 , c
)

for every c > 0. In addition, there exist integral ideals ci such that 〈xvi〉 = bici
for all i. As the norm of bi is less than  L|∆K|(1, 1), we deduce that for each i, the
norm of the ideal ci satisfies

N (ci) ≤ L|∆K|

(
4α+ 2

5
, o(1)

)
.

Denoting by c the arbitrarily small non-negative constant that arises in the o(1),

we follow the same argument as in Section 5.2. By fixing cb =
√

(2α+1)c
5 , we deduce
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that the probability for each ci to be B-smooth is

L|∆K|

(
2α+ 1

5
, cb

)−1

.

Hence we conclude that testing L|∆K|
(

2α+1
5 , 2cb

)
ideals suffices to complete the

relation collection. Indeed, we have to test L|∆K|
(

2α+1
5 , cb

)
ideals for each ideal bi

and given an ideal b as input, the number of factors bi is polynomial. Finally,
assuming Heuristic 4.7, we require L|∆K|

(
2α+1

5 , cb
)

relations, which leads to the
runtime stated above for the relation collection.

Complexity for the class group computation. Again, as in Section 5.2, the
final complexity for the class group computation follows directly and we get the
following theorem.

Theorem 6.3. Assuming ERH and Heuristics 4.4 and 4.7, for every number
field K that belongs to Dn0,d0,α,γ with α ∈

(
3
4 , 1
]
, our algorithm computes the class

group structure and the regulator with runtime

L|∆K|

(
2α+ 1

5
, o(1)

)
.

This new result allows to reduce the slope of the increasing line appearing in
our complexity figures. The worst complexity now becomes L|∆K|

(
3
5 , o(1)

)
. This

result is displayed in Figure 3.

depending on γ

L|∆K|
(
max(α, γ2 )

)
L|∆K|

(
1
2 ,

ω−1
2
√
ω

)
L|∆K|

(
2α+1

5 , o(1)
)

[GJ16]
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2
3

3
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Figure 3. Complexity obtained by our algorithms and Cheon’s trick.
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Appendix A. Smoothness properties

A.1. Smooth integers. The smoothness of an integer is another way to evaluate
its size which depends on its prime factors.

Definition A.1. For an integer B ∈ N, we say that an integer is B-smooth if
all its prime factors are below B. The bound B is then often called a smoothness
bound.

Smoothness probability. Let us denote by P(x, y) the probability that an inte-
ger x is y-smooth, that means all prime factors of x are less than or equal to y.
Dickman was the first one to address the question of asymptotic formulae in [Dic30].
Before stating his result, we introduce the Dickman rho-function, defined over R+

as the unique continuous function that satisfies uρ′(u) + ρ(u − 1) = 0 with initial
condition ρ(u) = 1 for u ∈ [0, 1].

Proposition A.2. For any fixed u > 0, we have

lim
x→∞

P
(
x, x1/u

)
= ρ(u).

Proof. This result appears in the work of Dickman [Dic30] and in the survey written
later by Hildebrand and Tenenbaum [HT93]. The latter also showed [HT93, Corol-
lary 1.3] that when u is large enough, ρ(u) may be approximated by u−u(1+o(1)). �

The main drawback of that previous result is that u has to be fixed: it cannot
depend on x. This issue is covered by the stronger result of Canfield, Erdős, and
Pomerance in [CEP83]:

Theorem A.3. For every ε > 0, there exists a constant Cε such that for all x ≥ 1
and 3 ≤ u ≤ (1− ε) log x

log log x , we have

P(x, x1/u) ≥ e−u(log u+log log u−1+ log log u−1
log u +E(x,u)),

where

|E(x, u)| ≤ Cε
(

log log u

log u

)2

.

Eventually, we can express P(x, y) by fixing u such that u = log x
log y and substitute

in the last expression. We obtain

P(x, y) = u−u(1+o(1)),

which we already have from Dickman’s work.

Corollary A.4. Assuming that x =  LN (α1, c1), y =  LN (α2, c2), and α1 > α2,
Theorem A.3 can be expressed as

P(x, y) ≥ LN
(
α1 − α2, (α1 − α2)

c1
c2

)−1

.
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Smoothness tests. Now we have estimated the ratio of smooth numbers below N
to N , it remains to give a way to recognize them. We need to introduce smooth-
ness tests. The first idea one may have is considering the complete factorization.
Once we know the prime decomposition of an integer, it is easy to recognize if the
number is smooth with respect to some smoothness bound. The best algorithm for
factoring an integer N is currently the Number Field Sieve (NFS) and has runtime

in LN

(
1
3 ,

3

√
64
9

)
— see [LLMP90] for more details.

However it seems reasonable that, given a smoothness bound B, to test if an
integer is B-smooth or not has a complexity that essentially depends on B, and
not so much on the input integer. Such an algorithm exists and is derived from
the Elliptic Curve Method, introduced by Lenstra in [Len87] for factoring integers.
It provides a Monte-Carlo algorithm whose heuristic complexity is given in the
following proposition.

Proposition A.5. For a given smoothness bound B and an integer N , ECM finds
the B-smooth part of N in time

(logN)
2 · LB

(
1

2
,
√

2

)
,

where the factor (logN)
2

comes from the multiplication of two N -bits integers.

A.2. Smooth ideals. For our purposes, we need to extend these results on smooth-
ness to ideals.

Definition A.6. For an integer B ∈ N, we say that an ideal a is B-smooth if all
its prime factors have a norm below B.

Scourfield substantially shows in [Sco04] that the results of Dickman can be
generalized to number fields. However, as in the case of integers, this does not
suffice and we need a stronger assumption, which we formulate as Heuristic 4.4:

Heuristic. The probability P(x, y) that an ideal of norm bounded by x is y-smooth
satisfies

P(x, y) ≥ e−u(log u)(1+o(1)) for u =
log x

log y
.

We stress that this is the exact correspondence of what have been proven for
integers. This heuristic already appears in the work of Biasse and Fieker [BF14,
Heuristic 1] about class group computation. The previous heuristic admits a neat
rewriting in terms of the handy L-notation:

Corollary A.7. Assuming that x =  L|∆K|(α1, c1), y =  L|∆K|(α2, c2), and α1 > α2,
Heuristic 4.4 can be expressed as

P(x, y) ≥ L|∆K|

(
α1 − α2, (α1 − α2)

c1
c2

)−1

.

Note that Seysen [Sey87] proved in 1985 a similar result for quadratic number
fields. For arbitrary degree, it remains conjectural, even under ERH.
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Smoothness tests. Testing smoothness for ideals is not very complicated, assum-
ing that we know how to test smoothness for integers. Indeed, given B ∈ N, if
a is B-smooth, then in particular its norm N (a) is B-smooth. Therefore, testing
smoothness for ideals essentially amounts to testing smoothness for ideal norms.
Computing the norm of an ideal is easy and has a polynomial runtime in both
the extension degree and the size of the norm. Once we know the prime numbers
appearing in the norm, it suffices to find the valuations at the prime ideals above
them. A way to figure out these valuations is explained in [Coh93, Section 4.8.3].
The algorithm described also has a complexity that is polynomial in the extension
degree and the size of the prime number p.

Finally, the runtime of ideal smoothness tests is the same as integer smoothness
tests:

Poly (n, logN (a)) · LB
(

1

2
,
√

2

)
,

where n is the extension degree of the field and N (a) the norm of the ideal we want
to test.
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